Present-day Fault Kinematics and their Reactivation Likelihood within and South of the North Tanzania Divergence (NTD), East African Rift System: Implication for Geo-hazards Assessment

Author:

Macheyeki Athanas Simon1

Affiliation:

1. Department of Geology, College of Earth Sciences, The University of Dodoma 1 , P. O. Box 11090, Dodoma-Tanzania

Abstract

Abstract This study investigates the relationship between the North Tanzania Divergence (NTD), the southern part of the NTD and the rift structures in the eastern part of the East African Rift System (EARS). It also assesses the susceptibility of these structures to reactivation under the current stress field. Fault slip data and focal mechanisms from various sources have been used to determine the minimum horizontal stress axes (Shmin) of different faults, including the Eyasi rift border fault south of the NTD. The analysis reveals that faults trending NW-SE to NNW-SSE have a sinistral sense of movement, while those trending NE-SW generally have a dextral sense of movement. The N60°E trending faults that dip easterly are not optimally oriented with the current stress field and have a low to moderate likelihood of reactivation. This includes the NE-SW trending Eyasi rift border fault (part of the NTD) and other structures oriented N60°E south of the NTD, with a computed slip tendency (Ts) of less than 0.5. Faults trending N-S, NNW-SSE, and NNE-SSW, on the other hand, have a high to the highest likelihood of reactivation (Ts > 0.85). The other faults in the study area, which trend NE-SW or NW-SE, have Ts values expressed as 0.5 ≤ Ts < 0.85. These findings have important implications for earthquake risk assessment in the NTD and south of the NTD, as geological constraints need to be taken into account for better management and mitigation. The results could be applied elsewhere in the EARS provided that they are under E-W extensional stress regime.

Publisher

Geological Society of India

Reference26 articles.

1. Néotectonique de l’arc égéen;Angelier;Soc. Géol. Nord. Publ.,(1979)

2. From orientation to magnitudes in paleostress determinations using fault slip data;Angelier;Jour. Struct. Geol.,(1989)

3. Fault slip analysis and paleostress reconstruction;Angelier,(1994)

4. Strain accommodation by slow slip and dyking in a youthful continental rift, East Africa;Calais;Nature,(2008)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3