Numerical simulation of the passive tracer advection in the White Sea

Author:

Chernov I. A.ORCID, ,Tolstikov A. V.ORCID,

Abstract

It is hardly possible to make experiments on transport of potentially dangerous tracers in a sea. Therefore numerical simulation is successfully used to assess the risks and consequences of various events like oil spills, flux of toxicants with river runoff after industrial accidents or phytoplankton in case of harmful algae bloom. As the White Sea is a transport hub and a strategically important location for extraction of natural resources, so it is important to know the most likely scenarios of pollutants behavior. The JASMINE numerical model, based on the FEMAO (Finite-Element Model of the Arctic Ocean) simulates evolution of sea state, including three-dimensional currents, temperature and salinity, and sea ice, and is able to calculate tracer advection, so giving answers to a number of questions related to how pollution evolves in the White Sea. We describe numerical experiments to study advection of floating tracers in the White Sea when the initial distribution is delta-like and located in the mouths of main rivers. Also, we calculate the time of almost complete removal of an initially homogeneous concentration of a passive tracer. Spatial resolution is 3 km, vertical grid is 5 m down to the depth level of 150 m (10 m for depths more than 150 m). The time step is 360 s. NOAA/NCEP atmospheric reanalysis is used for atmospheric forcing. Five main rivers are taken into account with the monthly-mean runoff taken from the multi-year observation data. We have estimated the time needed to remove most of the matter from the sea; it depends on morphometric characteristics of the bays and is the highest for the Onezhskiy bay. Matter exchange between the bays is low, only Dvinskiy-Onezhskiy-Mezenskiy transport is present, as we would expect from the geostrophic current pattern.

Publisher

O-Kratkoe Ltd

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3