Kinetic characteristics of the regenerative utilization process of the spent solution after chemical nickel plating

Author:

,Shumilova M. A.ORCID,Suksin N. E.ORCID,

Abstract

Galvanic production in terms of the degree of negative impact on the environment occupies a leading position in the global industrial production; therefore, the introduction of regenerative recycling technology is receiving increasing attention. The aim of the present work is to determine the kinetic characteristics of the precipitation reaction in a solution of nickel sulfate with sodium hydroxide to develop a technology for the regeneration utilization of spent solutions of chemical nickel plating (SCNPS). The object of the study was the spent solution of chemical nickel plating of one of the industrial enterprises of Izhevsk. The experiment was carried out in the temperature range 293–333 K at various concentrations of sodium hydroxide (1.25–2.60 M) and nickel sulfate (0.037–0.06 M). To determine the order of the reaction, we plot graphs in the coordinates lg w – lg C(Ni) using the experimental data, where w is the reaction rate. The tangent of the slope of the obtained linear dependences with a high degree of approximation (R2 = 0.98) is close to 2, therefore, the order of the reaction of the deposition of SCNPS with sodium hydroxide is second. With a graphical method for determining the rate constant of a second-order reaction for the dependence 1/С = f(t), the tangent of the slope of the straight line corresponds to the calculated parameter. In the investigated temperature range the rate constant takes values from 5·10-4 to 9·10-4 dm3·mol-1·s-1. The activation energy of the precipitation reaction, determined by the Arrhenius equation by graphic and calculation methods, is 16.57 kJ·mol-1 and 16.44 kJ·mol-1, respectively. The low values of Ea indicate a weak dependence of the reaction rate on temperature. Consequently, the introduction of the technology for the regeneration utilization of SCNPS will not entail large expenditures of energy resources for heating the reaction masses.

Publisher

O-Kratkoe Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3