From yeast genetics to biotechnology

Author:

Maráz Anna1

Affiliation:

1. 1 Szent István University Department of Microbiology and Biotechnology, Faculty of Food Science Somlói út 14-16 H-1118 Budapest Hungary

Abstract

Roots of classical yeast genetics go back to the early work of Lindegreen in the 1930s, who studied thallism, sporulation and inheritance of wine yeast strains belonging to S. cerevisiae. Consequent mutation and hybridization of heterothallic S. cerevisae strains resulted in the discovery of life cycle and mating type system, as well as construction of the genetic map. Elaboration of induced mutation and controlled hybridization of yeast strains opened up new possibilities for the genetic analysis of technologically important properties and for the production of improved industrial strains, but a big drawback was the widely different genetic properties of laboratory and industrial yeast strains. Genetic analysis and mapping of industrial strains were generally hindered because of homothallism, poor sporulation and/or low spore viability of brewing and wine yeast strains [1, 2]. In spite of this, there are a few examples of the application of sexual hybridization in the study of genetic control of important technological properties, e.g. sugar utilization, flocculation and flavor production in brewing yeast strains [3] or in the improvement of ethanol producing S. cerevisiae strains [4]. Rare mating and application of karyogamy deficient (kar) mutants also proved useful in strain improvement [5].Importance of yeasts in biotechnology is enormous. This includes food and beverage fermentation processes where a wide range of yeast species are playing role, but S. cerevisiae is undoubtedly the most important species among them. New biotechnology is aiming to improve these technologies, but besides this, a completely new area of yeast utilization has been emerged, especially in the pharmaceutical and medical areas. Without decreasing the importance of S. cerevisiae, numerous other yeast species, e.g. Kluyveromyces lactis, Hansenula polymorpha, Pichia pastoris, Schizosaccharomyces pombe and Yarrowia lipolytica have gained increasing potentialities in the modern fermentation biotechnology [6].Developments in yeast genetics, biochemistry, physiology and process engineering provided bases of rapid development in modern biotechnology, but elaboration of the recombinant DNA technique is far the most important milestone in this field. Other molecular genetic techniques, as molecular genotyping of yeast strains proved also very beneficial in yeast fermentation technologies, because dynamics of both the natural and inoculated yeast biota could be followed by these versatile DNA-based techniques.

Publisher

Akademiai Kiado Zrt.

Subject

General Immunology and Microbiology,General Medicine

Reference24 articles.

1. Homothallism of wine yeasts;Thornton R.I.;Antonie van Leeuwenhoek,1976

2. The genetic manipulation of industrial yeast strains;Stewart G.G.;Can J Microbiol,1981

3. Cross breeding of distillers’ yeast by hybridization of spore derived clones;Christensen B.E.;Carlsberg Res Commun,1987

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Removal of undesirable genes using yeast backcrossing;Journal of Bioscience and Bioengineering;2024-08

2. The yeast sphingolipid signaling landscape;Chemistry and Physics of Lipids;2014-01

3. Development of growth selection systems to isolate a-type or α-type of yeast cells spontaneously emerging from MATa/α diploids;Journal of Biological Engineering;2013

4. Gene copy number and polyploidy on products formation in yeast;Applied Microbiology and Biotechnology;2010-08-28

5. Progress in Metabolic Engineering of Saccharomyces cerevisiae;Microbiology and Molecular Biology Reviews;2008-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3