Affiliation:
1. Országos Vérellátó Szolgálat Őssejt-biológia Budapest Diószegi út 64. 1113
2. Semmelweis Egyetem, Egészségtudományi Kar Morfológiai és Fiziológiai Tanszék Budapest
3. University of Illinois at Chicago Department of Biochemistry and Molecular Genetics Chicago
Abstract
Analysis of genomic sequences has clearly shown that the genomic differences among species do not explain the diversity of life. The genetic code itself serves as only a part of the dynamic complexity that results in the temporal and spatial changes in cell phenotypes during development. It has been concluded that the phenotype of a cell and of the organism as a whole is more influenced by environmentally-induced changes in gene activity than had been previously thought. The emerging field of epigenetics focuses on molecular marks on chromatin; called the epigenome, which serve as transmitters between the genome and the environment. These changes not only persist through multiple cell division cycles, but may also endure for multiple generations. Irregular alterations of the epigenome; called epimutations, may have a decisive role in the etiology of human pathologies such as malignancies and other complex human diseases. Epigenetics can provide the missing link between genetics, disease and the environment. Therefore, this field may have an increasing impact on future drug design and serve as a basis for new therapeutic/preventative approaches. Orv. Hetil., 2012, 153, 214–221.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献