Affiliation:
1. Budapesti Műszaki és Gazdaságtudományi Egyetem, Villamos Energetika Tanszék Budapest Magyarország; Budapest University of Technology and Economics, Department of Electric Power Engineering Budapest Hungary
2. Magyar Elektrotechnikai Egyesület Budapest Magyarország; Hungarian Electrotechnical Association Budapest Hungary
3. Budapesti Műszaki és Gazdaságtudományi Egyetem, Hálózati Rendszerek és Szolgáltatások Tanszék Budapest Magyarország; Budapest University of Technology and Economics, Department of Networked Systems and Services Budapest Hungary
Abstract
Összefoglalás.
Minden fejlett ország erősen függ a villamosenergia-rendszerek működésétől, ami
az idő előrehaladtával várhatóan növekedni fog. A stabil működést számos faktor
befolyásolja, ezek egy része véletlenszerű (pl. időjárás), de az emberi tényező
is nagy hatással van a megbízhatóságra. Ebben a cikkben a szándékos károkozás
azon speciális eseteivel foglalkozunk, amikor a támadó a rendszert felügyelő és
irányító számítógépes rendszeren keresztül befolyásolja károsan a
villamosenergia-rendszer alapvető működését. Ehhez áttekintjük a két rendszer
összefonódását, megvizsgáljuk az elmúlt nyolc évben Ukrajnában történt ilyen
eseteket. A cikkben összegezzük és elemezzük a történéseket, valamint
javaslatokat teszünk, hogy mit lehet tenni az ilyen káros események elkerülése
érdekében, szem előtt tartva a „megelőzés, észlelés, reagálás” elvét.
Summary.
All developed countries are highly dependent on the operation of electric power
systems, and this dependence will probably increase. Many factors influence
stable operation, some of which are random (weather or failures of devices and
cables); however, human activities also have a significant impact on
reliability. In this paper, we deal with special cases of attacks that achieve a
detrimental effect on the electric power system by compromising the controlling
and monitoring computer systems. To support the reader, we first analyze the key
components of the physical and cyber parts of the system to provide an
understanding of the intertwining of these domains – it is a cyber-physical
system. We further elaborate on how an event can spread from one part to the
other through domains. Then, a series of actual examples underlines the
importance of this topic, focusing on malicious acts committed with the goal of
sabotaging the power system. Thereafter, we analyze cyber-attacks committed
during the last eight years in Ukraine. Most of these attacked the Ukrainian
electric power system, aiming for blackouts and device destruction. Some of the
attacks had severe consequences in other European countries as well. However,
some attacks were successfully stopped before any harm was made. After analyzing
the events, we conclude that threat actors’ focus shifted from causing
short-term blackouts to device destruction and long-term breakdowns. In the last
part of our paper, we enumerate mitigation methods for operators. Our
enumeration is based on the PreDeCo principle, namely prevention, detection, and
correction. In conclusion, the defender must separate its different purpose
networks, use strong authentication and authorization, and have proper patch
management policies. These techniques must be verified with regular penetration
tests. As the Ukrainian examples show, the threat actor sometimes can avoid
prevention techniques; thus, good detection is necessary. The detection is based
on analyzing the output of intrusion detection systems and detailed logging
facilities. The analysis should be done in the security operations center by
experts with knowledge of both cyberspace and electric power systems operations.
In case of an incident, the security operations center must make corrective
steps with the possible help of external experts. The corrective steps include
the understanding of the incident, the recovery from the incident, the
prevention of future similar incidents, and the digital forensic of the
incident.
Reference32 articles.
1. 1 Angyal I., Arató Gy., Bakos B., Baranya Zs., Bocsok V., Bogáncs T., ... Zámbó M. (2023) Villamosenergetikai ipari felügyeleti rendszerek kiberbiztonsági kézikönyve. Nemzeti Kibervédelmi Intézet. ISBN 978-615-82042-3-1
2. 2 Béres K. (2022) Pro-ukrainian hacker group claims hacked Rosseti Lenenergo's SCADA system. CyberThreat. Report
3. 3 Dai, H., Zhao, S., & Chen, K. (2017) A chaos-oriented prediction and suppression model to enhance the security for cyber physical power systems. Journal of Parallel and Distributed Computing, Vol. 103. pp. 87-95. ISSN 0743-7315. https://doi.org/10.1016/j.jpdc.2016.11.015
4. 4 Demony, C. (2022) Vodafone Portugal hit by hackers, says no client data breach. https://www.reuters.com/technology/vodafone-portugal-hit-by-hackers-says-no-client-data-breach-2022-02-08/ [Letöltve: 2023. 10. 30.]
5. 5 Dragos Inc. (2022) CHERNOVITE's PIPEDREAM Malware Targeting Industrial Control Systems (ICS). https://www.dragos.com/blog/industry-news/chernovite-pipedream-malware-targeting-industrial-control-systems/ [Letöltve: 2023. 10. 12.]