Affiliation:
1. HungaroMet Nonprofit Zrt. Budapest Magyarország; HungaroMet Hungarian Meteorological Service Budapest Hungary
Abstract
Összefoglalás.
Az elmúlt évtizedekben a globális felmelegedés hatásai Európában, azon belül a
Kárpát-medencében is nyilvánvalóvá váltak, s ez a hatás jelentős mértékű az
energiaszektorra is. A kizárólag az időjárás által befolyásolt függő fűtési és
hűtési energiaigényt leíró technikai klímaindexek alakulását mutatjuk be
Magyarországon, nevezetesen a fűtési foknap (Heating Degree Days) és a hűtési
foknap (Cooling Degree Days) paramétereket vizsgáljuk. A jelen klímát leginkább
jellemző éves és havi normálértékek mellett a változásokat is elemezzük. A múlt
század elejétől a fűtési foknapok egyértelmű csökkenése, míg a hűtési foknapok
egyértelmű emelkedése figyelhető meg. Országos átlagban 314,6 foknappal [°C nap]
csökkent a fűtési foknapok éves összege a lineáris trendmodell szerint 1901-től,
míg ugyanerre az időszakra 79,4 ℃ nappal nőtt a hűtési foknap értéke. A
legutóbbi három évtizedben, a legintenzívebb melegedés időszakában igen
markánsak a változások, s ez a folyamat minden bizonnyal folytatódik a század
végéig és azon túl is.
Summary.
In recent decades, the effects of global warming have become evident in Europe,
including the Carpathian Basin, and this impact is significant for the energy
sector. The most obvious impact of climate change in Hungary is the increase in
extremes associated with high temperatures. Not only summer, but also winter and
transition seasons show a warming trend, affecting all productive and service
sectors. Rising temperatures could lead to shorter heating seasons and milder
cold months, potentially reducing heating energy demand. However the heat waves
have become more frequent and intense due to warming, leading to an increase in
cooling energy demand. In the first part of this article, we present the
evolution of heating degree-days from the beginning of the last century to the
present day for the whole area of Hungary. The heating degree day is an
indicator of the energy consumption for heating of buildings, which depends only
on the weather. That is a temperature value, expressed in °Cday, which is
proportional to the amount of energy required to heat the indoor environment to
a given temperature on a given day, taking into account the daily minimum,
maximum and mean temperature for a specific base temperature (15.5°Cday).
Importantly, its value does not depend on the insulation of the buildings,
economic indicators or the type of energy sources. Essentially, the colder the
weather, the more the air temperature deviates from the base temperature of 15.5
degrees Celsius, the more energy is needed to heat the indoor environment and
the higher the heating degree day value will be. In addition, we present the
analysis of cooling degree days. The cooling degree day is derived in a similar
way, following the logic of the heating degree day derivation. Therefore, the
warmer the weather and the higher the air temperature is above the base
temperature of 22°C, the more energy is needed to cool the indoor
environment.
Based on the results presented in the article, we can conclude that the annual as
well as the monthly amounts of heating degree-days have decreased since the
beginning of the last century, with the greatest decrease in mountainous areas
and in Western Hungary. One of the few benefits of climate change is that less
energy is needed to heat interiors, and this is particularly true for the last
decades, when annual heating degree-day amounts were usually lower than normal.
At the same time, as heating degree-days have decreased, as the heat waves have
become more frequent and intense with warming, resulting in an increase in
cooling degree-days. In Hungary, on average, the last 30 years have been
characterised by the highest cooling degree-day values over the last century’s
climate normal periods. On a national average, the annual amount of heating
degree-days has decreased by 314.6°Cday according to the linear trend model
since 1901, while the cooling degree-day value has increased by 79.4°Cday over
the same period. During the period of most intense warming, the August
weather-dependent cooling energy demand increased the most. Due to the urban
heat island effect in the inner-city environment, cooling of buildings requires
additional energy. The recent trends is likely to continue until the end of the
century and beyond. Therefore important to monitor changes in climate parameters
affecting energy security and to develop an effective strategy and action plans
to address the climate risks for the energy sector.
Reference25 articles.
1. 1 Bokros K., & Lakatos M. (2022) Hőségperiódusok vizsgálata Budapesten a XX. század elejétől napjainkig. Légkör, Vol. 67. No. 4. pp. 208-218. https://doi.org/10.56474/legkor.2022.4.4
2. Multi-hazard assessment in Europe under climate change;Forzieri;Climate Change Vol 137 No 1,2016
3. Cross-sectoral impacts of climate change and socio-economic change for multiple, European land-and water-based sectors;Harrison;Climate Change Vol 128 No 3-4,2015
4. 4 IPCC (2014) In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M. (eds). Cambridge University Press: Cambridge, UK and New York, NY 1535 pp.
5. 5 IPCC (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA