Alternative bvar models for forecasting inflation

Author:

Heidari H.1

Affiliation:

1. 1 Urmia University Department of Economics P.O.Box 165 Urmia Iran

Abstract

This paper investigates the use of different priors to improve the inflation forecasting performance of BVAR models with Litterman’s prior. A Quasi-Bayesian method, with several different priors, is applied to a VAR model of simulated data as well as to the Australian economy from 1978:Q2 to 2006:Q4. A novel feature with this paper is the use of g-prior in the BVAR models to alleviate poor estimation of drift parameters of Traditional BVAR models. Some results are as follows: (1) In the Quasi-Bayesian framework, BVAR models with Normal-Wishart prior provide the most accurate forecasts of Australian inflation; (2) Generally in the parsimonious models, the BVAR with g-prior performs better than BVAR with Litterman’s prior; (3) In simulated data, the BVAR model with g-prior produces more accurate forecasts of driftless variable in the long-run horizons (first and second year forecast horizons).

Publisher

Akademiai Kiado Zrt.

Subject

Economics and Econometrics

Reference28 articles.

1. BVAR Forecasting for the G-7;Artis M.;International Journal of Forecasting,1990

2. European Asymmetries;Ballabriga S.;Journal of International Economics,1999

3. Doan, T. (1992): RATS: User’s Manual. (Version 4). Evanston, IL.

4. Forecasting and Conditional Projection Using Realistic Prior Distributions;Doan T.;Econometric Reviews,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3