“Less” Strong Chromatic Indices and the (7, 4)-Conjecture

Author:

Gyárfás András1,Sárközy Gábor N.12

Affiliation:

1. Alfréd Rényi Institute of Mathematics, Budapest, P.O. Box 127, Budapest, Hungary, H-1364

2. Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA

Abstract

A proper edge coloring of a graph 𝐺 is strong if the union of any two color classes does not contain a path with three edges (i.e. the color classes are induced matchings). The strong chromatic index 𝑞(𝐺) is the smallest number of colors needed for a strong coloring of 𝐺. One form of the famous (6, 3)-theorem of Ruzsa and Szemerédi (solving the (6, 3)-conjecture of Brown–Erdős–Sós) states that 𝑞(𝐺) cannot be linear in 𝑛 for a graph 𝐺 with 𝑛 vertices and 𝑐𝑛2 edges. Here we study two refinements of 𝑞(𝐺) arising from the analogous (7, 4)-conjecture. The first is 𝑞𝐴(𝐺), the smallest number of colors needed for a proper edge coloring of 𝐺 such that the union of any two color classes does not contain a path or cycle with four edges, we call it an A-coloring. The second is 𝑞𝐵(𝐺), the smallest number of colors needed for a proper edge coloring of 𝐺 such that all four-cycles are colored with four different colors, we call it a B-coloring. These notions lead to two stronger and one equivalent form of the (7, 4)-conjecture in terms of 𝑞𝐴(𝐺), 𝑞𝐵(𝐺) where 𝐺 is a balanced bipartite graph. Since these are questions about graphs, perhaps they will be easier to handle than the original special(7, 4)-conjecture. In order to understand the behavior of 𝑞𝐴(𝐺) and 𝑞𝐵(𝐺), we study these parameters for some graphs.We note that 𝑞𝐴(𝐺) has already been extensively studied from various motivations. However, as far as we know the behavior of 𝑞𝐵(𝐺) is studied here for the first time.

Publisher

Akademiai Kiado Zrt.

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3