Fatigue damage analysis of pavements under autonomous truck tire passes

Author:

Fahad Mohammad1ORCID,Nagy Richard1

Affiliation:

1. Department of Transport Infrastructure and Water Resources Engineering, Faculty of Civil Engineering, Széchenyi István University, Győr, Hungary

Abstract

Abstract Two different tire configurations consisting of a dual tire and a super single wide tire having different range and distribution of contact pressures have been analyzed. Along with the effect of speed on development of pavement damage at speeds of 5, 50 and 80 km h−1 under zero and uniform wander modes. Results show that at super slow speeds of 5 km h−1, at dual wheel moving at zero wander mode, decrease in fatigue life of the pavement is 3.5 years, which is 1.45 times more than the dual wheel moving at uniform wander and 3.4 times more than wide tire moving at uniform wander mode. The difference between fatigue damage at different lateral wander modes is prominent at speeds greater than 50 km h−1. A wide tire performs better than the dual wheel under zero wander configurations.

Publisher

Akademiai Kiado Zrt.

Subject

Computer Science Applications,General Materials Science,Modeling and Simulation,Civil and Structural Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effective lane width analysis for autonomous trucks;SN Applied Sciences;2023-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3