Thermal degradation and kinetic studies of redwood (Pinus sylvestris L.)

Author:

Anter N.1,Guida M. Y.1ORCID,Kasbaji M.23,Chennani A.1,Medaghri-Alaoui A.14,Rakib E. M.15,Hannioui A.14

Affiliation:

1. Laboratory of Organic and Analytical Chemistry (LCOA), Faculty of Sciences and Techniques (FST-BM), University of Sultan Moulay Slimane (USMS), 23000, Béni-Mellal, Morocco

2. Laboratory of Engineering in Chemistry and Physics of Matter, Faculty of Sciences and Techniques (FST-BM), University of Sultan Moulay Slimane (USMS), 23000, Béni-Mellal, Morocco

3. Laboratory of Chemical Processes and Applied Materials, Polydisciplinary Faculty (FP-BM), University of Sultan Moulay Slimane (USMS), 23000, Béni-Mellal, Morocco

4. Department of Chemistry and Environment, Faculty of Sciences and Techniques (FST-BM), University of Sultan Moulay Slimane (USMS), 23000, Béni-Mellal, Morocco

5. Higher School of Technology (EST-FBS), EST-Fkih Ben Saleh, University of Sultan Moulay Slimane (USMS), 23000, Béni-Mellal, Morocco

Abstract

AbstractIn this scientific paper, thermochemical conversion of redwood (RW) was studied. Using the thermogravimetric analysis' technique (TGA), the thermal behavior of RW samples was examined at four heating rates ranging from 5 to 20 K min−1 in inert atmosphere between 300 and 900 K. Two main objectives have been set for this study; the first one was the determination of the kinetic decomposition parameters of RW (Pinus sylvestris L.), and the second one was the study of the variation of characteristic parameters from the TG-DTG curves of the main RW's components, such as; cellulose, hemicellulose and lignin. The kinetic analysis was performed using three isoconversional methods (Vyazovkin (VYA), Friedman (FR) and Flynn-Wall-Ozawa (FWO)), Avrami theory method and the Integral master-plots (Z(x)/Z(0.5)) method to estimate activation energy (Ea), reaction order (n), pre-exponential factor (A) and model kinetic (f(x)) for the thermal decomposition of cellulose, hemicellulose and lignin components.The DTG and TG curves showed that three stages identify the thermal decomposition of RW, the first stage corresponds to the decomposition of hemicellulose and the second stage corresponds to the cellulose, while the third stage corresponds to the lignin's decomposition. For the range of conversion degree (x) investigated (0.1 ≤ x ≤ 0.7), the mean values of apparent activation energies for RW biomass were 127.60–130.65 KJ mol−1, 173.74–176.48 KJ mol−1 and 197.21–200.36 KJ mol−1 for hemicellulose, cellulose and lignin, respectively. Through varied temperatures from 550 to 600 K for hemicellulose, from 600 to 650 K for cellulose and from 750 to 800 K for lignin, the corresponding mean values of reaction order (n) were 0.200 for hemicellulose, 0.209 for cellulose and 0.047 for lignin. The pre-exponential factor's average values for three components of RW ranges from 0.08 × 1012 s−1 to 2.5 × 1012 s−1 (Ahemicellulose = 1.09 × 1012 s−1), 0.10 × 1014 s−1 to 0.28 × 1014 s−1 (Acellulose = 0.17 × 1014 s−1) and 3.07 × 1016 s−1 to 3.69 × 1016 s−1 (Alignin = 3.33 × 1016 s−1), respectively. The experimental data of RW had overlapped the D4, D2 and F3 in the conversion degree of 10–30%, 30–55% and 55–70% for the three components, respectively.

Publisher

Akademiai Kiado Zrt.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3