Effect of gamma radiation on antioxidant enzymes and G 6 PDH activities in Vicia faba plants

Author:

Moussa H.1

Affiliation:

1. 1 Atomic Energy Authority Department of Radioisotopes Dokki, Giza Egypt

Abstract

The effect of gamma irradiation on Vicia faba L. plants was investigated by exposing dry seeds to doses ranging from 0 to 100 Gray (Gy) and studying the activities and isozyme patterns of the key enzymes involved in oxidative stress defence, such as superoxide dismutases (SOD, EC 1.15.1.1), catalases (CAT, EC 1.11.1.6), peroxidases (POX, EC 1.11.1.7), ascorbate peroxidases (APOX, EC 1.11.1.11), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) and glutathione reductase (GR, EC 1.6.4.2), as well as the activity of an enzyme involved in a specific intermediary metabolic pathway, glucose-6-phosphate dehydrogenase (G 6 PDH, EC 1.1.1.49). The H 2 O 2 contents of faba bean leaves were also measured. None of the γ-irradiation doses used (0–100 Gy) had any effect on the activity of MDHAR, but they increased the enzyme activities of GR, APOX, SOD and G 6 PDH. Gamma rays at 20 Gy decreased the H 2 O 2 content, but the 100 Gy dose significantly increased the H 2 O 2 content compared with the non-irradiated plants. The results implied that the isozymes of SOD, CAT and POX present in faba bean cells growing in the presence of 0–15 Gy γ-irradiation are required to remove the reactive oxygen species (ROS) produced during normal, physiological processes. When the dose of γ-irradiation is ≥20 Gy, the level of ROS (produced indirectly by γ-irradiation) becomes too high to be dealt with by the existing antioxidant isozymes. The present research shows for the first time that the switch between the physiological oxidative response and a stress-related one occurs within a very narrow range of stress factor intensities, i.e. γ-irradiation doses. In the present study, this change took place between 15 and 20 Gy. Further investigations, using molecular biology techniques will be needed to determine the mechanisms involved in enzyme induction under ionizing conditions in order to evaluate changes in the gametic genomes at two possible levels: (i) the structural level, for studying mutations occurring in the DNA, and (ii) the functional level, by studying differential genetic expression between irradiated and non-irradiated plants.

Publisher

Akademiai Kiado Zrt.

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3