Combining ability and gene action studies for yield-contributing traits in crosses involving winter and spring wheat genotypes

Author:

Sharma S.1,Chaudhary H.1

Affiliation:

1. 1 CSK HP Agricultural University Molecular Cytogenetics and Tissue Culture Laboratory, Department Of Plant Breeding and Genetics Palampur India

Abstract

The success of winter × spring wheat hybridization programmes depends upon the ability of the genotypes of these two physiologically distinct ecotypes to combine well with each other. Hence the present investigation was undertaken to study the combining ability and nature of gene action for various morpho-physiological and yield-contributing traits in crosses involving winter and spring wheat genotypes. Five elite and diverse genotypes each of winter and spring wheat ecotypes and their F 1 (spring × spring, winter × winter and winter × spring) hybrids, generated in a diallel mating design excluding reciprocals, were evaluated in a random block design with three replications. Considerable variability was observed among the spring and winter wheat genotypes for all the traits under study. Furthermore, these traits were highly influenced by the winter and spring wheat genetic backgrounds, resulting in significant differences between the spring × spring, winter × winter and winter × spring wheat hybrids for some of the traits. The winter × spring wheat hybrids were observed to be the best with respect to yieldcontributing traits. On the basis of GCA effects, the spring wheat parents HPW 42, HPW 89, HW 3024, PW 552 and UP 2418 and the winter wheat parents Saptdhara, VWFW 452, W 10 and WW 24 were found to be good combiners for the majority of traits. These spring and winter wheat parents could be effectively utilized in future hybridization programmes for wheat improvement. Superior hybrid combinations for one or more traits were identified, all of which involved at least one good general combiner for one or more traits in their parentage, and can thus be exploited in successive generations to develop potential recombinants through various breeding strategies. Genetic studies revealed the preponderance of additive gene action for days to flowering, days to maturity and harvest index, and non-additive gene action for the remaining six traits.

Publisher

Akademiai Kiado Zrt.

Subject

Agronomy and Crop Science

Reference12 articles.

1. Attempt to improve the yield of spring wheat. II. Crosses between spring and winter wheats;Akerman A.;Sveriges Utsadesforenings Tidokrift,1949

2. Issues in diallel analysis;Baker R. J.;Crop Sci.,1978

3. Leaf rust resistance of some European varieties of wheat;Bartos P.;Can. J. Bot.,1969

4. Chaudhary, H. K. (1997): Genetic amelioration of spring wheat ecotypes for drought prone regions through spring × winter wheat hybridization. Proceedings of Symposium on Tropical Crop Research and Development , India-International, Trichur, Kerala, September 11–13, 1997.

5. Chaudhary, H. K., Kapoor, A. S. (1992): Inheritance of powdery mildew resistance in winter wheat. Proceeding Gregor Johann Mendel Foundation, International Seminar , Calicut, July 22–23, 1992.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3