Exosomes from bone mesenchymal stem cells alleviate mifepristone-induced human endometrial stromal cell injury by inhibiting TLR3 via delivering miR-941

Author:

Wang Yu1,Sun Xiaofei1,Yang Qing1,Yin Lili1ORCID

Affiliation:

1. Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, 110004, China

Abstract

Abstract Objective We aim to investigate the protective effect and underlying mechanisms of BMSCs-exo on human endometrial stromal cells (HESCs) induced by mifepristone in this study. Methods BMSCs-exo were extracted and then identified by transmission electron microscopy and western-blot assay. RT-PCR assay was used to determine the level of miR-941. MiR-941 mimics or inhibitor were transfected into BMSCs and the exosomes were extracted. Then, Cell activity, apoptosis rate, cell migration and invasion, as well as the expression of angiogenic proteins were determined in HESCs stimulated by mifepristone and BMSCs-exo. Next, Dual-luciferase reporting assay was used to verify the targeted binding of miR-941 to TLR3, and the TLR3 expression in HESCs was detected by RT-PCR and western-blot. Finally, TLR3 was overexpressed to evaluate the effects of miR-941 from BMSCs-exo on cell apoptosis, cell invasion and angiogenesis in HESCs induced by mifepristone. Results miR-941 was highly expressed in BMSCs-exo. Exosome miR-941 in BMSCs-exo inhibited the cell apoptosis, and promoted cell activity, cell migration, invasion as well as angiogenesis were also improved in HESCs induced by mifepristone. TLR3 was a target of miR-941, which was up-regulated in mifepristonetreated HESCs. We further found that miR-941 derived from BMSCs-exo down-regulated the expression of TLR3 in HESCs treated by mifepristone. In addition, TLR3 overexpression blocked the inhibition of miR-941 on mifepristone-induced cell apoptosis, as well as cell migration and angiogenesis in HESCs. Conclusions Thus, we concluded that BMSCs-exo has protective effect on mifepristone-induced cell damage by delivering miR-941 which targeted TLR3 and regulated cell activity, migration, and angiogenesis in HESCs.

Funder

Liaoning Provincial Major R&D Program

Publisher

Akademiai Kiado Zrt.

Subject

Physiology (medical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3