Emergence of fosfomycin resistance among isolates of Escherichia coli harboring extended-spectrum and AmpC β-lactamases

Author:

Bahramian Aghil1,Eslami Gita2,Hashemi Ali2,Tabibi Ali1,Heidary Mohsen3

Affiliation:

1. 1 Urology and Nephrology Research Center, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2. 2 Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3. 3 Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

Abstract

Urinary tract infection (UTI) is a common type of infectious disease globally. The aim of this study was to detect the frequency of fosA3 and fosC2 genes in extended-spectrum β-lactamases (ESBL) and blaDHA, blaCMY-2, and blaCMY-42 genes in AmpC β-lactamases-producing isolates of Escherichia coli. In total, 120 isolates of E. coli were collected from three teaching hospitals between March 2014 and February 2015. Antibiotic susceptibility tests were carried out by disk diffusion method. The presence of blaCMY-2, blaCMY-42, blaDHA, fosA3, and fosC2 genes was detected by polymerase chain reaction (PCR) and sequencing. Of the 120 strains, 92 (76.6%) were identified as ESBL producers, 30 (25%) were determined as AmpC β-lactamase producers, and 24 (20%) had both ESBL and AmpC β-lactamase enzymes. Imipenem, fosfomycin, and nitrofurantoin had the best effect against isolates of E. coli. PCR assay demonstrated that the frequency of blaCMY-2, blaCMY-42, and blaDHA genes among AmpC β-lactamases-producing strains were 39%, 1%, and 17.5%, respectively. This study reports the first detection of fosfomycin resistance in Iran. This study indicated the increasing prevalence of UTI isolates of E. coli-harboring ESBL and AmpC β-lactamases genes in Iran. Therefore, due to the high rate of blaDHA and blaCMY genes and emergence of fosfomycin-resistant E. coli isolates, we recommend continuous monitoring of antibiotic resistance as well as attention to guidelines of infection controls.

Publisher

Akademiai Kiado Zrt.

Subject

General Immunology and Microbiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3