Development and validation of high-performance liquid chromatography method for the simultaneous monitoring of pantoprazole sodium sesquihydrate and domperidone maleate in plasma and its application to pharmacokinetic study

Author:

Abbas Ghulam12,Saadullah Malik2,Rasul Akhtar2,Shah Shahid2,Khan Sajid Mehmood3,Hanif Muhammad1,Masood Ahmed Muhammad1

Affiliation:

1. 1 Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan

2. 2 Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan

3. 3 Faculty of Pharmacy and Alternative Medicine, The Islamia University, Bahawalpur, Pakistan

Abstract

A sensitive, inexpensive high-performance liquid chromatography–ultraviolet detection (HPLC–UV) method has been developed and validated for the simultaneous monitoring of pantoprazole sodium sesquihydrate (PSS) and domperidone maleate (DM) in rabbit plasma on a C18 column with UV detection at 285 nm. Box–Behnken design was used with 3 independent variables, namely, flow rate (X1), mobile phase composition (X2), and phosphate buffer pH (X3), which were used to design mathematical models. Response surface design was applied to optimize the dependent variables, i.e., retention time (Y1 and Y2) and percentage recoveries (Y3 and Y4) of PSS and DM. The method was sensitive and reproducible over 1.562 to 25 μg/mL. The effect of the quadratic outcome of flow rate, mobile phase composition, and buffer pH on retention time (p ˂ 0.001) and percentage recoveries of PSS and DM (p = 0.0016) were significant. The regression values obtained from analytical curve of PSS and DM were 0.999 and 0.9994, respectively. The percentage recoveries of PSS and DM were ranged from 94.5 to 100.41% and 94.77 to 100.31%, respectively. The developed method was applied for studying the pharmacokinetics of PSS and DM. The Cmax of test and reference formulations were 48.06 ± 0.347 μg/mL and 46.31 ± 0.398 μg/mL for PSS, and 15.11 ± 1.608 μg/mL and 12.06 ± 1.234 μg/mL for DM, respectively.

Publisher

Akademiai Kiado Zrt.

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3