Affiliation:
1. 1 Research Institute for Soil Science and Agricultural Chemistry (RISSAC) of the Hungarian Academy of Sciences H-1022 Budapest 15 Herman Ottó Str. Hungary
2. 3 Szent István University, Plant Protection Institute Microbiology and Environmental Toxicology Group Gödöllő Hungary
Abstract
A pot experiment was designed to study the colonization of indigenous arbuscular mycorrhizal fungi (AMF) on barley (
Hordeum vulgare
L.) host plant. Soils of the pots were collected from a long-term field microelement loading experiment on calcareous chernozem soil twelve years after 13 heavy metals (Al, As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Se, Sr and Zn) were applied once in four doses (0, 30, 90 and 270 mg element·kg
-1
d.w.). The biomass production and element accumulation of the host plant, the various colonization values of the arbuscular mycorrhiza fungi (AMF) – such as colonization intensity (M %), arbusculum richness (A %) in the root system and the sporulation intensity (g
-1
dry soil) in the rhizosphere – were measured. When considering the twelve-year adaptation process of the AM fungal populations at the various metal loads, a relatively balanced inside mycorrhiza colonization was found, suggesting the potentials for the selection of tolerant fungi in metal contaminated soils. The balanced infection intensity (M %) of the AM fungi and their common strategies with the host plant have resulted a nonsignificant shoot and root biomass production of barley in general. Mycorrhiza sporulation in the root system proved to be much variable and indicated the toxicity of metals and metal rates. Cd, Pb and Sr elements significantly reduced spore numbers, while a value of 34 spores·g
-1
soil was counted in the case of Ni in comparison to the control’s 22 spores·g
-1
soil value. Stress-defending strategies of the fungal–plant symbiosis, such as the increased arbusculum richness (A %) could be established for the Hg and Pb rates. In the case of Cd an increased root biomass production became a tool for stress alleviation and reduced the metal allocation towards the shoots. Mycorrhiza fungi are part of the common plant–microbe interactions and appropriate defending mechanisms in metal contaminated soils.
Subject
Soil Science,Agronomy and Crop Science
Reference28 articles.
1. Ahonen-Jonnarth, U. & Finlay, R. D., 2001. Effects of elevated Ni and Cd concentrations on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant and Soil. 236. 129–138.
2. Biró, B. et al., 1998. Toxicity of field applied heavy metal salts to the rhizobial and fungal microsymbionts of alfalfa and red clover. Agrokémia és Talajtan. 47. 265– 277.
3. Biró, B. et al., 2005. Mycorrhizal functioning as part of the survival mechanisms of barley at long-term heavy metal stress. Acta Biologica Szegediensis. 49. 65–68.
4. Chen, B. et al., 2004. Uptake of Cd from a highly contaminated calcareous soil by arbuscular mycorrhizal maize. Mycorrhiza. 14. 347–354.
5. Füzy, A. et al., 2008. Drought; but not salinity determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi. J. Plant Physiology. 165. 1181–1192.