Affiliation:
1. 1 MTA Agrártudományi Kutatóközpont Talajtani és Agrokémiai Intézet (MTA ATK TAKI) 1022 Budapest Herman Ottó út 15.
Abstract
Karbonátos Duna–Tisza közi homoktalajon vizsgáltuk a 0, 30, 90 és 270 kg·ha-1 mikroelem-terhelés hatását a lucernára a 2004 és 2008 közötti időszakban. A mikroelemek sóit egy ízben, a kísérlet indulásakor, 1995 tavaszán szórtuk ki Cr2(SO4)3, K2Cr2O7, CuSO4, Pb(NO3)2, Na2SeO3 és ZnSO4 formájában. A 6 elem×4 terhelési szint = 24 kezelés×3 ismétlés = 72 parcellát jelentett, 7×5 = 35 m2-es parcellákkal. A termőhely a homoktalajokra jellemzően rossz vízgazdálkodású, aszályérzékeny és az NPK főbb tápelemekkel gyengén ellátott. A szántott réteg 0,7–1,0% humuszt, 2–3% CaCO3-ot tartalmaz, a talajvíz 5–10 m mélyen található. Alaptrágyaként 100– 100–100 kg·ha-1 N, P2O5 és K2O hatóanyagot alkalmazunk évente az egész kísérletben. A lucerna telepítése előtt 2003 őszén 400 kg·ha-1 P2O5- és 600 kg·ha-1 K2O-adaggal előretrágyázást végeztünk. A N-trágyát továbbra is évente adagoltuk megosztva (ősszel és tavasszal fele-fele arányban).
A főbb eredmények:
– A talaj kielégítő NPK kínálata és a kedvező csapadékviszonyok hozzájárultak ahhoz, hogy a lucerna 5 éven át kielégítően fejlődött és összesen 45 t·ha-1 légszáraz szénatermést adott. A legkisebb hozamot (5,5 t·ha-1) az 1. év adta, a legnagyobb hozamokat (11, illetve 10 t·ha-1 ) a 2. és 3. évben kaptuk A kísérlet 10–14. éveiben a Cr(III)- és a Cr(VI)-szennyezés érdemi dúsulást nem okozott a lucerna hajtásában. A kontrolltalajon mért 0,1–0,5 mg·kg-1 Cr-koncentráció 1–2 mg·kg-1 értékre emelkedett átlagosan a szennyezett kezelésekben. Az elöregedő lucernában az évekkel a Cr-tartalom mérséklődött. A Cr(III) ion alapvetően megkötődött a feltalajban, míg a Cr(VI) ion döntően a 2–3 m-es talajmélységbe mosódott.
– Az ólom és a réz a szántott rétegben maradt. A kontrolltalajon mért 0,2–0,4 mg·kg-1 Pb-koncentráció 0,5–1,4 mg·kg-1-ra emelkedett a szénában, szennyezett talajon, az évek átlagában. A réz 5–7-ről 9–10 mg·kg-1-ra nőtt a maximális Cu-terheléssel, az évek átlagait tekintve. A szelén extrém módon, átlagosan 3 nagyságrenddel dúsult a szénában. A kontrolltalajon az 1 mg·kg-1 méréshatár alatt maradt, míg a maximális terheléssel 200–400 mg·kg-1 értékre ugrott. A széna takarmányozási célra alkalmatlanná vált. Kevésbé szennyezett talajon a lucerna fitoremediációs célokra alkalmas lehet. Az 5 év alatt a 45,5 t·ha-1 szénatermésbe erősen szennyezett kezelésben 6–12 kg·ha-1 Se akkumulálódott. A 10–15 évvel korábban adott Na-szelenit alapvetően Ca-szelenáttá alakulhatott ezen a karbonátos, jól szellőzött talajon és 4 m mélységig kimosódott. A cink mérsékelt mobilitást mutatott. A kontroll-talajon mért 18–21 mg·kg-1 Zn-tartalom a 270 kg·ha-1 Zn-adaggal 25–31 mg·kg-1-ra emelkedett az évek átlagában. A Zn-terhelés tulajdonképpen a lucerna rejtett Zn-hiányát szüntette meg.
– Az 5 év alatt a lucerna számításaink szerint 1580 kg N, 1177 kg Ca, 744 kg K (893 kg K2O), 145 kg Mg, 140 kg S, 133 kg P (305 kg P2O5); 0,1–12,6 kg Se; 2–3 kg Na; 0,8–1,3 kg Zn; 278–427 g Cu; 14–39 g Cr és 15–35 g Pb elemet épített be a 45 t föld feletti hajtásába. A felvett nitrogén több mint 2/3-a a levegőből származhatott. A talajkimerülés kérdése felmerül a tartós lucernatermesztés során. A K-hiányos termőhelyeken elsősorban a K, a kilúgzott talajokon a Ca pótlásáról gondoskodni szükséges a telepítés előtt. Hasonló viszonyokat feltételezve elvileg az Pb fitoremediációja 65 ezer, a Cr 50 ezer, a Cu 7560, a Zn 2885, a Se 105 ilyen „lucernaévet” igényelne. A lucerna tehát elvileg alkalmas lehet a szelénnel mérsékelten szennyezett talaj tisztítására.
– Az 5 m mélységig végzett mintavételek adatai szerint 2006-ban (a kísérlet 12. éve után) a Cr(VI) kimosódási zónája meghaladta a 3 m, míg a Se kilúgzása a 4 m mélységet a 270 kg·ha-1 kezelésekben. A Cr(III), Pb, Zn és Cu elemeknél a vertikális elmozdulás nem volt igazolható.
– Korábbi adatainkat és a lucerna élettani optimumait is figyelembe véve az 1 t tervezhető szénatermés úgynevezett fajlagos elemtartalmának irányszámait 35-7-25-30-5 = N-P2O5-K2O-CaO-MgO kg·t-1 értékben javasoljuk a hazai szaktanácsadás számára bevezetni.
Subject
Soil Science,Agronomy and Crop Science
Reference22 articles.
1. Baranyai F., Fekete A. & Kovács I., 1987. A magyarországi talaj tápanyagvizsgálatok eredményei. Mezőgazdasági Kiadó. Budapest.
2. Bergmann, W., 1992. Nutritional Disorders of Plants. Gustav Fischer Verlag. Jena– Stuttgart–New York.
3. Bridge, M. B., 1995. Toxic metal accumulation from agricultural use of sludge: are US EPA regulations protective? J. Environ. Qual. 24. 5–18.
4. Chang, A. C., Granato, T. C. & Page, A. L., 1992. A methodology for establishing phytotoxicity criteria for Cr, Cu, Ni and Zn in agricultural land application of municipal sewage sludges. J. Environ. Qual. 21. 521–536.
5. Egnér, H., Riehm, H. & Domingo, W. R., 1960. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. K. Lantbr. Högsk. Ann. 26. 199–215.