Effects of submaximal cycling at different exercise intensities on maximal isometric force output of the non-exercised elbow flexor muscles

Author:

Matsuura R12,Hirakoba K3,Takahashi K4

Affiliation:

1. 1 Living and Health Sciences Education, Specialized Subject Fields of Education, Graduate School of Education, Joetsu University of Education, Joetsu, Japan

2. 2 The Joint Graduate School in Science of School Education, Hyogo University of Teacher Education, Kato, Japan

3. 3 Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan

4. 4 Faculty of Liberal Studies, National Institute of Technology, Kumamoto College, Koshi, Japan

Abstract

The purpose of this study was to examine the effects of submaximal cycling at different exercise intensities on maximal isometric force output of the non-exercised elbow flexor muscles after the cycling. A total of 8 healthy young men performed multiple maximal voluntary contractions by the right elbow flexion before, immediately after, 5 min after, and 10 min after a 6-min submaximal cycling at ventilatory threshold (LI), 70% (MI), and 80% (HI) with both arms relaxed in the air. Force and surface electromyogram (EMG) of the right biceps brachii muscle during the multiple MVCs, blood lactate concentration ([La]), cardiorespiratory responses, and sensations of fatigue for legs (SEF-L) were measured before, immediately after, 5 min after, and 10 min after the submaximal cycling with the three different exercise intensities. Immediately after the submaximal cycling, [La], cardiorespiratory responses, and SEF-L were enhanced in proportion to an increase in exercise intensity of the cycling. Changes in force and EMG activity during the multiple MVCs were not significantly different across the three conditions. The findings imply that group III/IV muscle afferent feedback after the submaximal cycling does not determine the magnitude of MVC force loss of the non-exercised upper limb muscles.

Publisher

Akademiai Kiado Zrt.

Subject

Physiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3