Affiliation:
1. 1 Beijing Normal University School of Mathematical Sciences Beijing 100875 P.R. China
Abstract
We obtain a necessary and sufficient condition for the lacunary polynomials to be dense in weighted Banach spaces of functions continuous on the rays emerging from the origin. This generalizes the solution to the classical Bernstein problem given by S. Izumi, T. Kawata and T. Hall.
Reference12 articles.
1. La problème des fonctions continues sur tout l’axe réel et l’une de ses applications;Bernstein S.;Bull. Soc. Math. France,1924
2. On weighted polynomial approximation with monotone weights;Borichev A.;Proc. Amer. Math. Soc.,2000
3. On the closure of polynomials in weighted space of functions on the real line;Borichev A.;Indiana Univ. Math. J.,2001
4. On weighted polynomial approximation with gaps;Deng G. T.;Nagoya Math. J.,2005