Affiliation:
1. 1 Eötvös Loránd University Department of Numerical Analysis Pázmány P. sétány I/C H-1117 Budapest Hungary
Abstract
This paper is devoted to the study of Θ-summability of Fourier-Jacobi series. We shall construct such processes (using summations) that are uniformly convergent in a Banach space (\documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\usepackage{bbm}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$C_{w_{\gamma ,\delta } } ,\parallel \cdot \parallel _{w_{\gamma ,\delta } }$$
\end{document}) of continuous functions. Some special cases are also considered, such as the Fejér, de la Vallée Poussin, Cesàro, Riesz and Rogosinski summations. Our aim is to give such conditions with respect to Jacobi weights
wγ,δ
,
wα,β
and to summation matrix Θ for which the uniform convergence holds for all
f
∈ \documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\usepackage{bbm}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$C_{w_{\gamma ,\delta } }$$
\end{document}. Order of convergence will also be investigated. The results and the methods are analogues to the discrete case (see [16] and [17]).
Reference17 articles.
1. The Lebesgue function of Fourier-Jacobi sums;Agahanov S. A.;Vestnik Leningrad. Univ.,1968
2. Chanillo, S. and Muckenhoupt, B. , Weak Type Estimates for Cesaro Sums of Jacobi Polynomial Series, Mem. Amer. Math. Soc. , 102 (1993), No. 487. MR 93g :42018
3. Felten, M. , Boundedness of first order Cesàro means in Jacobi spaces and weighted approximation on [−1, 1], 2004, Habilitationsschrift, Seminarberichte aus dem Fachbereich Mathematik der FernUniversität in Hagen (ISSN 0944-5838), Band 75, pp. 1–170.
4. Uniform boundedness of (C; 1) means of Jacobi expansions in weighted sup norms. I (The main theorems and ideas);Felten M.;Acta Math. Hungar.,2008
5. Uniform boundedness of (C; 1) means of Jacobi expansions in weighted sup norms. II (Some necessary estimations);Felten M.;Acta Math. Hungar.,2008
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献