Affiliation:
1. 1 Tongji University Department of Mathematics Shanghai 200092 P. R. China
Abstract
Let Pr denote an almost-prime with at most r prime factors, counted according to multiplicity. In this paper we show that the inequality \documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\usepackage{bbm}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$\left\{ {\sqrt p } \right\} < p^{ - \tfrac{1}
{{15.5}}}$$
\end{document} has infinitely many solutions in primes p such that p + 2 = P4.
Reference30 articles.
1. Representations of primes by quadratic forms;Ankeny N. C.;American J. Math,1952
2. On the fractional part of pθ;Balog A.;Arch. Math. (Basel),1983
3. On the order of ζ(1/2 + it);Bombieri E.;Ann. Scuola Norm. Sup. Pisa Cl. Sci,1986
4. On the representation of a large even integer as the sum of a prime and the product of at most two primes;Chen J. R.;Sci. Sin,1973
5. Restriction theory of the Selberg sieve with applications;Green B.;J. de Théorie des Nombres de Bordeaux,2006
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献