Affiliation:
1. 1 University of Mazandaran Department of Mathematics, Faculty of Mathematical Sciences Babolsar Iran
Abstract
In this paper, we consider the system \documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\usepackage{bbm}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$\left\{ {\begin{array}{*{20}c}
{\left\{ { - \Delta _{p\left( x \right)} u = \lambda a\left( x \right)\left| u \right|} \right.^{r_1 \left( x \right) - 2} u - \mu b\left( x \right)\left| u \right|^{\alpha \left( x \right) - 2} u\;x \in \Omega } \\
{\left\{ { - \Delta _{q\left( x \right)} \nu = \lambda c\left( x \right)\left| \nu \right|} \right.^{r_2 \left( x \right) - 2} \nu - \mu d\left( x \right)\left| \nu \right|^{\beta \left( x \right) - 2} \nu \;x \in \Omega } \\
{u = \nu = 0\;x \in \partial \Omega } \\
\end{array} } \right.$$
\end{document} where Ω is a bounded domain in ℝN with smooth boundary, λ, μ > 0, p, q, r1, r2, α and β are continuous functions on \documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\usepackage{bbm}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$\bar \Omega$$
\end{document} satisfying appropriate conditions. We prove that for any μ > 0, there exists λ* sufficiently small, and λ* large enough such that for any λ ∈ (0; λ*) ∪ (λ*, ∞), the above system has a nontrivial weak solution. The proof relies on some variational arguments based on the Ekeland’s variational principle and some adequate variational methods.
Reference20 articles.
1. Regularity results for stationary electro-rheological fluids;Acerbi E.;Arch. Ration. Mech. Anal.,2001
2. Positive solutions for a class of p(x)-Laplacian problems;Afrouzi G. A.;Glasgow Math. J.,2009
3. Mountain pass and Ekeland’s principle for eigenvalue problem with variable exponent;Ben Ali K.;Complex variables and elliptic equations,2009
4. Sobolev embedding with variable exponent;Edmunds D.;Studia Math.,2000
5. Sobolev embedding theorems for spaces Wk,p(x)(Ω);Fan X. L.;J. Math. Anal. Appl.,2001