Affiliation:
1. 1 Queen Mary University of London School of Mathematical Sciences London E1 4NS England
Abstract
Let G be a nilpotent group with finite abelian ranks (e.g. let G be a finitely generated nilpotent group) and suppose φ is an automorphism of G of finite order m. If γ and ψ denote the associated maps of G given by \documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\usepackage{bbm}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$\gamma :g \mapsto g^{ - 1} \cdot g\phi and \psi :g \mapsto g \cdot g\phi \cdot g\phi ^2 \cdots \cdot \cdot g\phi ^{m - 1} for g \in G,$$
\end{document} then Gγ · kerγ and Gψ · ker ψ are both very large in that they contain subgroups of finite index in G.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Automorphisms of Finite Order of Soluble Groups of Finite Rank;Studia Scientiarum Mathematicarum Hungarica;2021-04-14
2. Automorphisms of finite order of nilpotent groups IV;Rendiconti del Seminario Matematico della Università di Padova;2016
3. Automorphisms of finite order of nilpotent groups III;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2014-08-19