Affiliation:
1. 1 University of Cádiz Department of Mathematics Avda. de la Universidad s/n 11402 Jerez de la Frontera Spain
Abstract
Let
T
be an operator on a separable Hilbert space
H
, then it is called supercyclic if there exists an
x
∊
H
, (called supercyclic vector for
T
) such that the set {
λTnx
:
λ
∊ ℂ} is dense in
H
. Let
T
= (
T1
, ...,
TN
) be a system of
N
commuting contractions defined on a separable Hilbert space, in this article we will show that if there exists at least a point of the Harte spectrum on \documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\usepackage{bbm}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$\mathbb{T}^N$$
\end{document} (where \documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\usepackage{bbm}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$\mathbb{T}$$
\end{document} is the unit circle), then there exists a vector such that is not supercyclic for any of the
N
-contractions. This result complements recent results of M. Kosiek and A. Octavio (see [4]) and extend results in [7].