Affiliation:
1. 1 University of Pécs Institute of Mathematics and Informatics Ifjúság u. 6 7624 Pécs Hungary
Abstract
Consider a finite abelian group G which is a direct product of its subsets A and B both containing the identity element e. If the non-periodicity of A and B forces that neither A nor B can span the whole G, then G must be an elementary 2-group of rank six.
Reference9 articles.
1. On the factorization of finite abelian groups;Bruijn N. G.;Indag. Math. Kon. Ned. Akad. Wetersch.,1953
2. Tiling of binary spaces;Cohen G. D.;SIAM J. Discrete Math.,1996
3. Small p-groups without full-rank factorization;Haanpää H.;International Journal of Algebra and Computation,2008
4. Sur la factorisation des groupes abéliens;Hajós G.;Časopis Pěs. Mat. Fys.,1950
5. Sur la probléme de factorisation des groupes cycliques;Hajós G.;Acta Math. Acad. Sci. Hungar.,1950