Affiliation:
1. 1 Université Paris 13 UMR U557 Inserm/U1125 Inra/Cnam/Paris 13, SMBH 74 rue Marcel Cachin 93017 Bobigny Cedex France
Abstract
Let {
BH;K
(
t
),
t
≧ 0} be a bifractional Brownian motion with indexes 0 <
H
< 1 and 0 <
K
≦ 1 and define the statistic \documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\usepackage{bbm}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$V_T = \mathop {\sup }\limits_{0 \leqq s \leqq T - a_T } \beta _T \left| {B_{H,K} (s + a_T ) - B_{H,K} (s)} \right|$$
\end{document} where
βT
and
αT
are suitably chosen functions of
T
≧ 0. We establish some laws of the iterated logarithm for
VT
.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献