1. Some Diophantine quadruples in the ring ℤ[ % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqipC0xg9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaarm % qr1ngBPrgitLxBI9gBaGqbaiab-jHiTiab-jdaYaWcbeaaaaa!3C78! $$ \sqrt { - 2} $$];Abu Muriefah F. S.;Math. Commun.,2004
2. The equations 3x2 − 2 = y2 and 8x2 − 7 = z2;Baker A.;Quart. J. Math. Oxford Ser. (2),1969
3. Sets in which xy + k is always a square;Brown E.;Math. Comp.,1985
4. Generalization of a problem of Diophantus;Dujella A.;Acta Arith.,1993
5. Some polynomial formulas for Diophantine quadruples;Dujella A.;Grazer Math. Ber.,1996