Development and validation of UPLC-MS/MS method for in vitro quantitative analysis of pyrazinamide in lipid core-shell nanoarchitectonics for improved metabolic stability

Author:

Thalla Maharshi1,Jala Aishwarya2,Borkar Roshan M.2ORCID,Banerjee Subham1ORCID

Affiliation:

1. 1Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari-781101, Kamrup, Assam, India

2. 2Department of Pharmaceutical Analysis, NIPER-Guwahati, Changsari-781101, Kamrup, Assam, India

Abstract

AbstractPyrazinamide (PZA), a medication for tuberculosis, has high aqueous solubility and low permeability, undergoes extensive liver metabolism, and exhibits liver toxicity through its metabolites. To avoid this, PZA in lipid core-shell nanoarchitectonics has been formulated to target lymphatic uptake and provide metabolic stability to the incorporated drug. The UPLC-MS/MS method for reliable in vitro quantitative analysis of pyrazinamide (PZA) in lipid core-shell nanoarchitectonics as per ICH guidance was developed and validated using the HILIC column. The developed UPLC-MS/MS method is a simple, precise, accurate, reproducible, and sensitive method for the estimation of PZA in PZA-loaded lipid core-shell nanoarchitectonics for the in vitro determination of % entrapment efficiency, % loading of pyrazinamide, and microsomal stability of lipid core-shell nanoarchitectonics in human liver microsomes. The % entrapment efficiency was found to be 42.72% (±12.60). Lipid nanoarchitectonics was found to be stable in human liver microsomes, where %QH was found to be 6.20%, that is, low clearance. Thus, this formulation is suitable for preventing PZA-mediated extensive liver metabolism. These findings are relevant for the development of other lipid-mediated, suitable, stable nanoformulations containing PZA through various in vitro methods.

Funder

Science and Engineering Research Board (SERB), Ministry of Science & Technology, Govt. of India.

Publisher

Akademiai Kiado Zrt.

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3