Arrangements of 14, 15, 16 and 17 points on a sphere

Author:

Böröczky Károly1,Szabó László2

Affiliation:

1. 1 Eötvös Loránd Tudom\ányegyetem, Természettudományi Kar, Geometria Tanszék Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary

2. 2 Magyar Tudományos Akadémia, Számítástechnikai és Automatizálási Kutatóintézet Postafiók 63, H-1518 Budapest, Hungary

Abstract

Let ak denote the maximum number with the property that one can place k points on the unit sphere S2 so that the spherical distance between any two different points is at least ak. The exact value of ak is determined only for some small values of k, namely, for k = 12 and k=24. In this paper we give new upper bounds on ak for k=14,15,16,17.

Publisher

Akademiai Kiado Zrt.

Subject

General Mathematics

Reference11 articles.

1. Arrangement of 24 points on a sphere;R. Robinson;Math. Ann.,1961

2. Endliche Punktmengen auf der 2-Sphäre mit möglichst großem Minimalabstand. Habilitationsschrift, Universität Göttingen, 1963. (English translation: Finite point-sets on S2 with minimum distance as large as possible;L. Danzer;Discrete Math.,1963

3. Über eine Abschätzung des kürzesten Abstandes zweier Punkte eines auf einer Kugelfläche liegenden Punktsystems;L. Fejes;Jber. Deutsch. Math. Verein.,1943

4. On the densest packing of spherical caps;L. Fejes;Amer. Math. Monthly

5. The Tammes problem for n = 10;L. Hárs;Studia Sci. Math. Hungar.,1986

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards a proof of the 24-cell conjecture;Acta Mathematica Hungarica;2018-04-24

2. Configuration Spaces of Equal Spheres Touching a Given Sphere: The Twelve Spheres Problem;Bolyai Society Mathematical Studies;2018

3. Five Essays on the Geometry of László Fejes Tóth;Bolyai Society Mathematical Studies;2018

4. Covering the sphere by equal zones;Acta Mathematica Hungarica;2016-05-19

5. The Tammes Problem for N = 14;Experimental Mathematics;2015-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3