Good approximation and characterization of subgroups of R = Z

Author:

Bíró A.1,Deshouillers J. M.1,T. Sós Vera2

Affiliation:

1. 1 Please ask the editor of the journal.

2. 2 Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences Reáltanoda u. 13-15. 1053 Budapest

Abstract

Let be a real irrational number and A =(xn) be a sequence of positive integers. We call A a characterizing sequence of or of the group Z mod 1 if lim n 2A n !1 k k =0 if and only if 2 Z mod 1. In the present paper we prove the existence of such characterizing sequences, also for more general subgroups of R = Z . Inthespecialcase Z mod 1 we give explicit construction of a characterizing sequence in terms of the continued fraction expansion of. Further, we also prove some results concerning the growth and gap properties of such sequences. Finally, we formulate some open problems.

Publisher

Akademiai Kiado Zrt.

Subject

General Mathematics

Reference7 articles.

1. Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis

2. On a series of cosecants related to a problem in ergodic theory;K. Petersen;Compositio Math.,1973

3. Caractérisation des ensembles normaux

4. On the theory of Diophantine approximations. II. Inhomogeneous problems;V. Sós;Acta Math. Acad. Sci. Hungar.,1958

5. Sets of fractional dimensions which occur in some problems of number theory;H. Eggleston;Proc. London Math. Soc.,1952

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterized Subgroups Related to some Non-arithmetic Sequence of Integers;Mediterranean Journal of Mathematics;2024-08

2. Reflexive group topologies on the integers generated by sequences;Topology and its Applications;2024-02

3. Eggleston's dichotomy for characterized subgroups and the role of ideals;Annals of Pure and Applied Logic;2023-08

4. Factorizable subgroups of the circle group;Topology and its Applications;2023-01

5. Topologically $$\mathcal {I}$$-torsion elements of the circle;Ricerche di Matematica;2022-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3