A sejten kívüli szabad DNS felszabadulásának és degradációjának in vivo elemzése

Author:

Barták Barbara Kinga1,Nagy Zsófia Brigitta1,Spisák Sándor2,Tulassay Zsolt13,Dank Magdolna4,Igaz Péter13,Molnár Béla13

Affiliation:

1. II. Belgyógyászati Klinika, Molekuláris Gasztroenterológiai Laboratórium, Semmelweis Egyetem, Általános Orvostudományi Kar Budapest, Szentkirályi u. 46., 1088

2. Department of Medical Oncology, Dana-Farber Cancer Institute Boston, Massachusetts, USA

3. Molekuláris Medicina Kutatócsoport, Magyar Tudományos Akadémia Budapest

4. Onkológiai Központ, Semmelweis Egyetem, Általános Orvostudományi Kar Budapest

Abstract

Abstract: Introduction: Cell-free DNA (cfDNA) was first detected in human plasma in the 1940s, but the knowledge on its regulation and rate of release is incomplete. CfDNA can originate from both normal and tumour cells. Aim: Our aims were to investigate the rate of cfDNA’s release in SHO mice/HT-29 colorectal adenocarcinoma cell line xenograft model and to define the decay of methylated and non-methylated DNA fragments in C57BL/6 bloodstream. Method: SHO mice were xenografted with human HT-29 cells, than blood samples were collected over 2 months. CfDNA was isolated, then quantified by real-time PCR with highly specific genomic and mitochondrial human and mouse primer sets. This method permitted to define the ratio of human/mouse DNA. To assess the degradation rate of cfDNA, 3000 bp sized methylated and non-methylated DNA fragments were injected into healthy and C38 tumour-cell vaccinated C57BL/6 mice’s bloodstream. The decay of amplicons was measured with 19 PCR assays. Results: The amount of human DNA until the 2nd week was below the limit of detection. From the third week, a continuous growth was experienced, which reached 18.26% by the 8th week. Moreover, it was found that in healthy animals the non-methylated DNA disappears from the plasma after 6 hours, while the methylated fragment was detectable even after 24 hours. In animals with tumour, both amplicons were detectable after 24 hours. Conclusion: The examination of the role and mechanism of cfDNA shows an increasing level of interest. This work can contribute to a better understanding of the release and degradation of cfDNA. Orv Hetil. 2018; 159(6): 223–233.

Publisher

Akademiai Kiado Zrt.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3