Liver bud transplantation in rats

Author:

Kobayashi Eiji,Enosawa Shin

Abstract

Abstract: Introduction: Research has made progress in organ fabrication using an extracellular matrix, cell sheets, or organoids. Human liver tissue has been constructed using a 3-dimensional (3D) bioprinter and showed evidence that an in vitro generated liver bud was reformed in a rodent liver model. This study describes the stages of development of rat fetal organs and liver structure and reviews recent progress in liver organoid transplantation. Methods: The authors developed the procedures for creating a transected plane for use in experimental microsurgery in rats. A liver lobe was fixed vertically with gauze and it was ligated with 6-0 silk suture in the cut line; the parenchyma was cut, and major vessels were ligated to create the transected plane. The ligated tissue was carefully resected. Hemostasis was not required and hepatic components remained on the transected plane. The plane was covered by omentum. Results: Using this model, we transplanted fetal liver or a 3D bioprinted liver organoid. This microsurgical method enabled creation of an intact liver parenchyma plane. No bleeding was observed. The transplanted liver components successfully engrafted on the liver. Conclusion: This method may provide an essential environment for growing liver using portal and arterial blood flow.

Publisher

Akademiai Kiado Zrt.

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3