Affiliation:
1. University of Debrecen, Mathematical Institute, H-4002 Debrecen Pf.400, Hungary
Abstract
Abstract
Let m ≠ 0, ±1 and n ≥ 2 be integers. The ring of algebraic integers of the pure fields of type is explicitly known for n = 2, 3,4. It is well known that for n = 2, an integral basis of the pure quadratic fields can be given parametrically, by using the remainder of the square-free part of m modulo 4. Such characterisation of an integral basis also exists for cubic and quartic pure fields, but for higher degree pure fields there are only results for special cases.
In this paper we explicitly give an integral basis of the field , where m ≠ ±1 is square-free. Furthermore, we show that similarly to the quadratic case, an integral basis of is repeating periodically in m with period length depending on n.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献