Involvement of chromosomally-encoded genes in malathion utilization by Pseudomonas aeruginosa AA112

Author:

Abo-Amer Aly1

Affiliation:

1. 1 Sohag University Department of Botany, Division of Microbiology, Faculty of Science Sohag Egypt

Abstract

Malathion is an organophosphate insecticide that has been widely used for both domestic and commercial agricultural purposes. However, malathion has the potential to produce toxic effects in mammalian systems. In this study, Pseudomonas aeruginosa AA112 which was isolated from soil using enrichment technique could utilize the malathion as a sole carbon source and a source of energy. Pseudomonas aeruginosa AA112 was able to grow in MSMPY medium containing 42.75 mg/ml malathion. However, the optimum concentration of malathion which supported the maximum bacterial growth was found to be 22. 8 mg/ml. Malathion was used as an initial source of energy and carbon when it was found without additional carbon sources (in MSM medium) while it was utilized as second source of energy and carbon in a nutrient-supplemented medium (in MSMPY medium). Moreover, lead acetate test indicated that malathion was first attacked at a sulphur site 1–2 hours after the start of incubation. TLC and IR analysis indicated that malathion was completely degraded into diethyl succinate, hydrogen sulphide and phosphates. Therefore a malathion degradation pathway was proporsed. The degradation of malathion is attributed to the genes located on the chromosome and at least three proteins of high molecular size might be involved in malathion utilization. Bacteria able to use malathion as a food source or metabolize its residues in the environment to inactive, less toxic, and harmless compounds, could be used in bioremediation of an environmental pollution caused by the pesticide.

Publisher

Akademiai Kiado Zrt.

Subject

General Immunology and Microbiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3