Targeting Crosstalk of Signaling Pathways among Muscles-Bone-Adipose Tissue: A Promising Therapeutic Approach for Sarcopenia

Author:

Abstract

The aging process is associated with the development of a wide range of degenerative disorders in mammals. These diseases are characterized by a progressive decline in function at multiple levels, including the molecular, cellular, tissue, and organismal. Furthermore, it is responsible for various healthcare costs in developing and developed countries. Sarcopenia is the deterioration in the quality and functionality of muscles, which is extremely concerning as it manages many functions in the human body. This article reviews the molecular crosstalk involved in sarcopenia and the specific roles of many mediator molecules in establishing cross-talk between muscles, bone, and fatty tissues, eventually leading to sarcopenia. Besides, the involvement of various etiological factors, such as neurology, endocrinology, lifestyle, etc., makes it exceedingly difficult for clinicians to develop a coherent hypothesis that may lead to the well-organized management system required to battle this debilitating disease. The several hallmarks contributing to the progression of the disease is a vital question that needs to be addressed to ensure an efficient treatment for sarcopenia patients. Also, the intricate molecular mechanism involved in developing this disease requires more studies. The direct relationship of cellular senescence with aging is one of the pivotal issues contributing to disease pathophysiology. Some patented treatment strategies have been discussed, including drugs undergoing clinical trials and emerging options like miRNA and protein-enclosed extracellular vesicles. A clear understanding of the secretome, including the signaling pathways involved between muscles, bone, and fatty tissues, is extremely beneficial for developing novel therapeutics for curing sarcopenia.

Publisher

Aging and Disease

Subject

Cell Biology,Neurology (clinical),Geriatrics and Gerontology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3