Sexual Dimorphism in Brain Sirtuin-1 and m6A Methylated Sirtuin-1 mRNA, and in Protection with Post-Injury Anti-miR-200c treatment, after Experimental Stroke in Aged Mice

Author:

Xu Lijun,

Abstract

We previously demonstrated that inhibition of miR-200c was protective against stroke in young adult male mice by augmenting sirtuin-1 (Sirt1). In the present study we assessed the role of miR-200c on injury, Sirt1, and bioenergetic and neuroinflammatory markers in aged male and female mice after experimental stroke. Mice were subjected to 1hr of transient middle cerebral artery occlusion (MCAO) and assessed for post-injury expression of miR-200c, Sirt1 protein and mRNA, N6-methyladenosine (m6A) methylated Sirt1 mRNA, ATP, cytochrome C oxidase activity, tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), infarct volume and motor function. MCAO induced a decrease in Sirt1 expression at 1d post-injury only in males. No differences in SIRT1 mRNA were observed between the sexes. Females had greater baseline miR-200c expression and a greater increase in miR-200c in response to stroke, while pre-MCAO levels of m6A SIRT1 was greater in females. Males had lower post-MCAO ATP levels and cytochrome C oxidase activity, and higher TNFα and IL-6. Post-injury intravenous treatment with anti-miR-200c reduced miR-200c expression in both sexes. In males, anti-miR-200c increased Sirt1 protein expression, reduced infarct volume, and improved neurological score. Conversely in females anti-miR-200c had no effect on Sirt1 levels and provided no protection against injury from MCAO. These results provide the first evidence of sexual dimorphism in the role of a microRNA in aged mice after experimental stroke and suggest sex-differences in epigenetic modulation of the transcriptome and downstream effects on miR biological activity may play a role in sexually dimorphic outcomes after stroke in aged brains.

Publisher

Aging and Disease

Subject

Cell Biology,Neurology (clinical),Geriatrics and Gerontology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3