Antibacterial Efficacy of Linezolid Alone and in Combination with Zinc Oxide Nanoparticles against Methicillin-Resistant S. Aureus Clinical Isolates

Author:

Khan Imran,Ali Sara,Khan Ikram,Mohamed Salma,Khan Sarmir,Khan Feroz,Higazi Hassan

Abstract

Skin and soft tissue infections caused by methicillin-resistant S. aureus (MRSA) are among the most common bacterial infections. Linezolid is a cortisone drug for the treatment of infections caused by MRSA. However, developing resistance to linezolid creates a hurdle in the treatment of these infections. The present study aimed to determine the activity of linezolid alone and in combination with zinc oxide nanoparticles (ZnO-NPs) for the purpose of reducing resistance and enhancing its efficacy. For this study, MRSA isolates were taken and confirmed by using the antibiotic susceptibility testing method. The minimum inhibitory concentration (MIC) of both antibiotics and nanoparticles against MRSA clinical isolates was done by using the broth microdilution method. A checkerboard assay has used the determination of the combined activity of linezolid and ZnO-NPs. ZnO-NPs displayed a spherical shape with smooth surface morphology and had a mean size of 10 nm to 20 nm, with a zeta potential of 3.57 mV. The activity of ZnO-NPs against MRSA clinical isolates was 200 µg/ml. Almost 81% of isolates were found sensitive to linezolid with MIC lower than 4 µg/ml, and 19% were resistant, having MIC greater than 4 µg/ml. The combination of an antibiotic and nanoparticles reduced the activity of each of them twofold. The current study revealed that both linezolid and ZnO-NPs have antimicrobial activity against MRSA when used alone. The combination of both medications reduces each other's MIC twofold and has an antagonistic impact. Further research is needed to determine the mechanism through which these medications inhibit each other's activity.

Publisher

International Medical Research and Development Corporation

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3