Using titanium-in-quartz geothermometry and geospeedometry to recover temperatures in the aureole of the Ballachulish Igneous Complex, NW Scotland

Author:

Morgan D. J.1,Jollands M. C.12,Lloyd G. E.1,Banks D. A.1

Affiliation:

1. School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK

2. Research School of Earth Sciences, The Australian National University, Canberra ACT 0200, Australia

Abstract

Abstract‘Titanium-in-Quartz’ geothermometry suggests quartzites could yield reliable temperature estimates. We here apply four calibrations of the titanium-in-quartz geothermometer to contact-metamorphosed quartzites surrounding the Ballachulish Igneous Complex, Scotland. Two agree broadly with thermal modelling and pre-existing geothermometry; two give temperatures consistently too low. As reported in earlier studies, the technique suffers from difficulties in analysing low titanium (Ti) levels with high spatial and analytical precision. However, this study finds that the critical problem is one of Ti heterogeneity, which poses difficulties in constraining the chemical activity of Ti during quartz growth under metamorphic conditions. Scanning electron microscope-cathodoluminescence (SEM-CL) textures support an interpretation of extensive Ti disequilibrium despite the presence of rutile, indicating dynamic interplay between grain boundary diffusion, fluid/melt percolation and grain growth. The strong zonation suggests a possible geothermometer based on apparent volume diffusion of Ti-in-quartz to derive grain growth histories. Analysis of rutile–quartz interaction implies peak contact temperatures of 645±12 °C, precise but reliant on external estimates of cooling rate from thermal models. Our conclusions support caution in applying Ti-in-quartz geothermometry in aureole settings. However, rutile–quartz juxtaposition prior to heating to >600 °C defines a Ti diffusion couple, employable as a thermometer if cooling rates are constrained by other means.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3