Importance of pre-existing fault size for the evolution of an inverted fault system

Author:

Reilly Cathal123,Nicol Andrew124,Walsh John2

Affiliation:

1. GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand

2. Fault Analysis Group, School of Geological Sciences, University College Dublin, Belfield, Dublin 4, Ireland

3. Present address: Midland Valley, Floor 9, 2 West Regent Street, Glasgow G2 1RW, UK

4. Present address: Department of Geological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand

Abstract

AbstractFault inversion has been documented in many basins worldwide, yet the details of how the initial extensional faults impact on the geometry and growth of the reactivated contractional system is often poorly resolved by the available data. Two-dimensional (2D) and 3D seismic reflection, and well data have been used to chart the evolution of inverted faults from the Taranaki Basin, offshore New Zealand. Sedimentary rocks up to 8 km thick record Late Cretaceous–Paleocene normal faults inverted during Miocene and younger shortening. The displacement and length of early normal faults is a key determinant for the reactivation and size of the subsequent reverse faults. All normal faults with maximum vertical displacements ≥600 m and lengths ≥9 km were inverted along their entire length, while smaller faults were not inverted. The proportion of the total basin-wide strain accommodated on each fault is comparable between deformational episodes. The hierarchy of reverse fault lengths was established rapidly, with longer faults accruing a greater proportion of the total strain from an early stage of shortening. The reverse fault system is dominated by inverted normal faults, which accrue displacement at the expense of smaller faults, and utilize the largest crustal-scale elements of the pre-existing system. The size of pre-existing heterogeneities is an important control for the magnitude and spatial extent of elevated stresses during contraction, which, in turn, control the dimensions, locations and displacements of subsequent fault growth.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3