Affiliation:
1. Australian School of Petroleum, Centre for Tectonics, Resources and Exploration (TRaX), University of Adelaide, Adelaide 5005, Australia (e-mail: bainsworth@asp.adelaide.edu.au)
Abstract
AbstractMarginal marine depositional systems exhibit stratigraphic reservoir compartmentalization potential at three hierarchical scales. At each of these scales, stratigraphic compartmentalization potential can be related to the dominant depositional processes and accommodation:coarse sediment supply ratio (A/S) that are acting at the time of deposition. All three orders of compartmentalization potential must be considered in order to define optimal field development plans and completion strategies. The lowest order of compartmentalization is usually at the inter-parasequence scale. The parasequence is represented by a conformable succession of strata separated by marine flooding surfaces and as such it generally defines the basic flow unit in marginal marine systems. In systems tracts associated with relatively high A/S ratios, for example late Lowstand, Transgressive and early Highstand (steeply rising shoreline trajectories), vertical compartmentalization potential is relatively high because of the enhanced preservation potential of flooding surface shales under these conditions. In systems tracts associated with relatively low A/S ratios, for example late Highstand, Falling-stage and early Lowstand (flat, slightly rising and falling shoreline trajectories), vertical compartmentalization potential of parasequences is reduced because the potential for erosion of flooding surface shales by overlying deposits is high and hence potential for vertical sand–sand contact between parasequences is enhanced. The second level of compartmentalization hierarchy is the inter sand-body scale. Individual sand bodies are defined within parasequences. The lateral connectivity of these sand bodies is a product of the dominant depositional processes active at the time of their deposition (wave, tidal, fluvial). Wave-dominated systems tend to produce more laterally continuous sand bodies, fluvial-dominated systems more laterally restricted sand bodies and tide-dominated systems both laterally continuous and laterally restricted sand bodies. Vertical compartmentalization potential of these reservoir sand bodies is related to A/S regime. In high A/S regimes, sand bodies are more likely to be disconnected or compartmentalized. In low A/S regimes, erosional amalgamation of sand bodies is more likely thereby leading to lower compartmentalization potential. The third order of potential stratigraphic compartmentalization is the intra sand-body scale. This scale is represented by intra sand-body heterogeneities such as dipping or horizontal shales, carbonaceous-rich beds or laminae, shale abandonment plugs of channels and carbonate concretions. In high A/S regimes the preservation potential of these heterogeneities is relatively high leading to an enhanced potential for intra sand-body compartmentalization. Lower A/S regimes result in a greater likelihood of lateral and vertical erosion of these heterogeneities leading to a higher potential for reservoir connectivity.
Publisher
Geological Society of London
Subject
Geology,Ocean Engineering,Water Science and Technology
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献