Neutron-induced 37Ar recoil ejection in Ca-rich minerals and implications for 40Ar/39Ar dating

Author:

Jourdan F.12,Renne P. R.23

Affiliation:

1. Western Australian Argon Isotope Facility, JdL Center & Department of Applied Geology, Curtin University, Perth, WA 6845, Australia

2. Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94709, USA

3. Department of Earth and Planetary Sciences, University of California, Berkeley, CA 94720, USA

Abstract

AbstractThe 40Ar/39Ar dating technique requires the transformation of 39K into 39Ar by neutron activation. Neutron activation has undesirable secondary effects such as interfering isotope production, and recoil of 39Ar and 37Ar atoms from their (dominant) targets of K and Ca. In most cases, the grains analysed are large enough (>50 μm) such that the amount of target atoms ejected from the grains is small and has a negligible effect on the ages obtained. However, increasing needs to date fine-grained rocks requires constraining, and in some cases correcting for, the effect of nuclear recoil. Previous quantitative studies of recoil loss focus mostly on 39Ar. However, 37Ar loss can affect the ages of Ca-rich minerals via interference corrections on 36Ar (and, to a lesser extent, 39Ar), yielding lower 40Ar*/39ArK and, thus, an age spuriously too young. New results focused on 37Ar recoil by measuring the apparent age of multi-grain populations of Ca-rich minerals including Fish Canyon plagioclase (FCp) and Hb3gr hornblende, with discrete sizes ranging from 210 to <5 µm. We use previous result on sanidine grains to correct for the 39Ar recoil loss. For the finest fractions, FCp and Hb3gr apparent ages are younger than the 39Ar recoil-corrected ages expected for these minerals, with a maximum deviation of −40% (FCp) and −21% (Hb3gr) reached for grains below 5 μm. We calculate 37Ar-depletion values ranging from approximately 30 to 91% and from approximately 28 to 98% for plagioclase and hornblende, respectively. This results in x0 values (mean thickness of the partial depletion layer) of 3.3±0.4 μm (2σ; FCp) and 3.6±1.4 μm (Hb3gr), significantly higher than suggested by current models. The reason for the substantial 37Ar loss is not well understood, but might be related to the radiation damage caused to the mineral during irradiation. x0 (39Ar) and x0 (37Ar) values obtained in this study, along with crystal dimensions, can be used for correcting 40Ar/39Ar ages from 39Ar and 37Ar recoil loss. We also discuss the relevance of our results to vacuum-encapsulation studies and isotopic redistribution in fine-grained minerals.Supplementary material:Annex 1, 2 and 3 are available at www.geolsoc.org.uk/SUP18610. Annex 1 and 2: Raw argon data corrected for blank, mass discrimination and radioactive decay for Fish Canyon plagioclase (Annex 1) and Hb3gr hornblende (Annex 2). Annex 3: Step-heating 40Ar/39Ar age spectra for FCp (Fig. A3.1) and Hb3gr (Fig. A3.2).

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3