Roles of lithospheric strain softening and heterogeneity in determining the geometry of rifts and continental margins

Author:

Huismans R. S.12,Beaumont C.1

Affiliation:

1. Geodynamics Group, Department of Oceanography, Dalhousie University, Halifax (Nova Scotia), Canada, B3H 4J1

2. Current address: Department of Earth Sciences, Bergen University, 5006 Bergen, Norway (e-mail: Ritske.Huismans@geo.uib.no)

Abstract

AbstractPlane strain thermo-mechanical finite-element model experiments are used to investigate the effects of frictional–plastic strain softening and inherited weakness on the style of lithospheric extension. The model results are compared with the Newfoundland–Iberia conjugate rifted margins with the goal of understanding the lithospheric properties that controlled their evolution during rifting. Our proposition is that coupling between the plastic–viscous layering, acting together with frictional–plastic strain softening localized on inherited weak heterogeneities, can explain the initial wide rift and distributed rift basins that are later abandoned in favour of a narrow rift in which mantle lithosphere is exhumed to the surface. The models comprise uniform composition viscous and plastic layers in which focused deformation is nucleated on either a single weak ‘seed’ or a statistical white noise distribution of inherited strain. Strain softening of frictional–plastic layers acts as a positive feedback mechanism that creates localized shear zones from the inherited weak heterogeneities. The sensitivity of deformation to the choice of softening parameters and the type of inherited noise is examined in cases where the deeper part of the crust is either weak or strong.Lithosphere-scale models with a single weak seed exhibit a range of asymmetric and symmetric rifting modes that are mostly determined by the feedback between two primary controls, coupling between the plastic and viscous layers and strain softening. Decreasing and increasing the rifting velocity can change the mode, and asymmetry is strongest in models with low rifting velocities and a strong lower crust. Analysis of equivalent simple-bonded plastic–viscous two-layer models using the minimum rate of dissipation principle demonstrates that the mode selected depends on the division of the dissipation between the layers. Criteria developed on minimizing the total dissipation show how mode selection changes with increasing viscosity, or rifting velocity, from the: asymmetric plug or half-graben (AP) mode; through the symmetric plug or graben (PS) mode, to the distributed pure shear (PS) mode. Numerical models confirm these results.Models with statistical white-noise-inherited strain have similar modes to those with a single seed. In addition, modes with multiple sets of shear zones develop in the plastic layer for a range of intermediate parameter combinations. We believe that distributed noise in combination with a weak lower crust and slow extension can produce model results in accord with general features of the Newfoundland–Iberia conjugate margins; an initially distributed wide rift mode, followed by a late-stage narrow rift with a significant component of mantle exhumation.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3