The role of gravitational instabilities, density structure and extension rate in the evolution of continental margins

Author:

Burov E.1

Affiliation:

1. Laboratory of Tectonics UMR 7072, University of Pierre and Marie Curie, Paris, France

Abstract

AbstractFormation of rifted continental margins is associated with localized thinning and breakup of the continental lithosphere, driven or accompanied by the ascent of the lithosphere–asthenosphere boundary. Thinning creates sharp density and viscosity contrasts and steep boundaries between cold deformed lithosphere and hot upwelling asthenosphere, thus providing conditions for the development of positive (asthenosphere) and negative (mantle lithosphere) Rayleigh–Taylor (RT) instabilities. The evolution of many continental margins (e.g. Newfoundland margin and Iberian margin) is characterized by slow spreading rates. This allows the RT instabilities to grow at the timescale of rifting. The impact of positive RT instabilities (asthenospheric upwelling) is well studied. The negative RT instabilities, associated with mantle down-welling, remain an overlooked factor. However, these instabilities should also affect the rift evolution, in particular, they may cause mantle thinning or thickening below the rift flanks. Our numerical experiments suggest that the ratio of the RT-growth rate to the extension rate controls the overall rift geometry and evolution. Even if the effect of negative RT instabilities is more important for slow extension rates of 2×5 mm year−1 (Deborah number, De<1), it is still significant for 2–3 times higher extension rates of 2×15 mm year−1 (De<10). The numerical experiments for extension rates of 2×15 mm year−1 and mantle–asthenosphere density contrasts of 10–20 kg m−3 demonstrate a number of structural similarities with continental margins characterized by low De (e.g. Flemish Cap and Galicia margin). In particular, rift asymmetry results from interplay between the RT instabilities and differential stretching at De<1. Formation of interior basins occurs at De≈1–3. The best correspondence with the observed geometry of rifted margins is obtained for chemical density contrast of 20 kg m−3 and extension rate of 2×15 mm year−1, which is twice that of the averaged values inferred from the observations. This suggests that margins may initially (prebreakup stage) extend at higher rates than the average extension rates characterizing rift evolution. The influence of RT instabilities is strongly controlled by extension rate, density, rheology and thermal structure of the lithosphere; this implies that we need better constraints on these parameters from the observations.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3