The resilience of Tethyan planktonic and benthic calcifying algae to Early Cretaceous perturbations: comparison between the Valanginian Weissert Event and the Early Aptian Oceanic Anoxic Event 1a

Author:

Erba Elisabetta1ORCID,Parente Mariano2

Affiliation:

1. Dipartimento di Scienze della Terra, Università degli Studi di Milano, 20133 Milan, Italy

2. Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse (DiSTAR), Università degli Studi di Napoli Federico II, Naples, Italy

Abstract

Abstract During the Cretaceous, the Berriasian–Aptian interval witnessed a transition from a relatively cool climate with intermittent polar ice to a greenhouse state that persisted throughout the Late Cretaceous. These palaeoclimatic changes were associated with the construction of large igneous provinces (LIPs), which significantly perturbed the ocean–atmosphere system by introducing large amounts of CO 2 , trace metals and micronutrients, thereby impacting the biosphere. Our study focused on the Tethyan Ocean during the Early Cretaceous, examining the resilience of planktonic and shallow-water benthic calcifying algae to environmental changes. We observed their adaptation, recovery dynamics and the influence of palaeoCO 2 levels on their resilience. Calcification patterns of calcareous nannoplankton served as a proxy for ecological and engineering resilience. While calcareous nannoplankton as a whole showed high resistance, individual taxa exhibited varying levels of resilience. Nannoconids, particularly narrow-canal ones, were highly sensitive and had low resistance. In contrast, Watznaueria barnesiae showed the least sensitivity and highest resistance, likely due to its adaptive strategies and long lifespan. Nannoplankton calcification recovery (engineering resilience) from the Weissert Event took c. 3 million years. After the Early Aptian Oceanic Anoxic Event 1a (OAE1a), instead, nannoplankton did not return to pre-perturbation conditions. In shallow-water platforms, Dasycladales, aragonitic benthic calcifiers, exhibited lower resilience compared to nannofossils. They experienced a decline in species diversity across both the Weissert Event and the OAE 1a, which could indicate higher sensitivity to reduced carbonate saturation under high atmospheric p CO 2 conditions. After the Valanginian Weissert Event, Dasycladales were able to recover, albeit they show a much lower engineering resilience compared to nannoconids, as it took nearly 10 million years to revert to pre-disturbance diversity. The OAE 1a represented a more intense perturbation: the decrease of species diversity was much more drastic and permanent, and Dasycladales were unable to recover, losing their dominant role as carbonate platform biocalcifiers for the remainder of the Cretaceous. Our study provides an assessment of the resilience of Tethyan phytoplanktonic and shallow-water benthic calcifying algae to disturbances during the Early Cretaceous, with implications for tipping points associated with palaeoCO 2 levels. The differential responses in terms of timing and magnitude and the recovery dynamics contribute to the understanding of the potential impacts of current and future global changes on the resilience of marine ecosystems and the thresholds that may lead to ecological crises.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Geological Society of London

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3