On the detection and monitoring of effusive eruptions using satellite SO2 measurements

Author:

Carn S. A.12

Affiliation:

1. Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI 49931, USA (e-mail: scarn@mtu.edu)

2. Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA

Abstract

AbstractTimely detection and quantification of lava effusion rates are crucial for volcanic hazard mitigation during effusive eruptions. Satellite-based detection methods typically exploit the exceptional radiant heat fluxes associated with lava effusion, but effusive eruptions can also emit prodigious amounts of sulphur dioxide (SO2). Measuring the magnitude and temporal evolution of SO2 emissions provides an additional means for monitoring effusive eruptions, complementing thermal monitoring. Examples of effusive eruptions detected since 1978 using ultraviolet (UV) satellite measurements of SO2 emissions by the Total Ozone Mapping Spectrometer (TOMS), Ozone Monitoring Instrument (OMI) and Ozone Mapping and Profiler Suite (OMPS) are reviewed. During many effusive eruptions, trends in SO2 production mimic the classic waxing–waning pattern characteristic of such events that is also seen in thermal infrared (TIR) hotspot data, suggesting a qualitative link between SO2 emissions and lava effusion rates. An example of lava effusion rate calculation based on TOMS SO2 measurements is presented for the 1998 eruption of Cerro Azul (Galápagos Islands), for which detailed eruption observations and independent estimates of effusion rates are available. Combining TOMS-derived SO2 emission rates with estimates of sulphur content in Cerro Azul lavas yields lava effusion rates almost identical to independently derived values, demonstrating the utility of the technique.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3