Mafic magma replenishment, unrest and eruption in a caldera setting: insights from the 2006 eruption of Rabaul (Papua New Guinea)

Author:

Bouvet de Maisonneuve C.12,Costa F.1,Patia H.3,Huber C.2

Affiliation:

1. Earth Observatory of Singapore, Nanyang Technological University, Singapore 639798

2. School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA

3. Rabaul Volcano Observatory, Rabaul, Papua New Guinea

Abstract

AbstractUnderstanding the magmatic processes that drive unrest at silicic calderas remains a major goal in Volcanology. Rabaul in Papua New Guinea is an exceptional location because after two decades of unrest and a peak in seismicity and deformation in 1983–85, eruptive activity began in 1994 and is still ongoing. A particularly large sub-Plinian eruption occurred from Tavurvur in October 2006. Whole-rock compositions are andesitic and reflect mixing/mingling between basaltic and dacitic magmas from the same system. The magmas that fed the 2006 eruption were stored at about 930°C, with 1–3 wt% H2O, 25–520 ppm CO2, and 50–2500 ppm SO2 in the melt. Melt inclusions hosted in pyroxene, and plagioclase phenocrysts record fractional crystallization at ≤200 MPa under relatively dry and poorly oxidizing conditions. Magma mixing/mingling is expressed as heterogeneous glass compositions, strongly zoned phenocrysts, and mafic crystal aggregates. A textural maturation from fine, acicular to large, blocky crystal clots implies different relative ages of formation. Modelling the chemical zoning of plagioclase shows that mafic–silicic interactions started a couple of decades prior to the 2006 eruption and continued until days to weeks prior to eruption. Basaltic replenishments have been driving unrest and eruption at the Rabaul caldera since the 1970s.Supplementary material:Tables and figures reporting the composition of the Tavurvur 2006, Kombiu and 1.4 ka BP caldera samples and showing thermodynamic modelling with MELTS are available at http://www.geolsoc.org.uk/SUP18816

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3