The use of palaeomagnetism and rock magnetism to understand volcanic processes: introduction

Author:

Ort M. H.1,Porreca M.23,Geissman J. W.4

Affiliation:

1. SESES, Northern Arizona University, Box 4099, Flagstaff, AZ 86011, USA

2. Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via dell'Arcivescovado, 8-67100 L'Aquila, Italy

3. Departamento de Geociências, Centro de Vulcanologia e Avaliação de Riscos Geológicos (CVARG), Universidade dos Açores, 9500–801 Ponta Delgada, Portugal

4. Department of Geosciences, ROC 21, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA

Abstract

AbstractThis Special Publication provides a snapshot of our understanding of volcanic processes through the use of palaeomagnetic and rock magnetic techniques. Here, we provide a context for the book, placing individual chapters within the milieu of previous work, including some magnetic techniques that were not used in the particular studies described herein. Thermoremanent magnetization is a powerful tool to understand processes related to heating and cooling of rocks, including estimating the temperature of emplacement of pyroclastic deposits, which may allow us to better understand the rates of cooling during eruption and transport. Anisotropy of magnetic susceptibility and anisotropy of remanence are used primarily to investigate rock fabrics, and allow the interpretation of flow dynamics in dykes, lava flows and pyroclastic deposits, as well as the location of the eruptive vents. Rock magnetic characteristics can help in the correlation of volcanic deposits but also provide means to date volcanic deposits and to better understand the processes of cooling of the deposits, as the magnetic minerals can change with temperature. In addition, volcanic rocks may be key recorders of past magnetic fields, allowing a better understanding of changes in field intensity and, perhaps, providing clues of how the magnetic field is formed.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3