Developments in synthetic aperture radar interferometry for monitoring geohazards

Author:

Riedmann M.1,Haynes M.1

Affiliation:

1. NPA Group, Crockham Park, Edenbridge TN8 6SR, UK (e-mail: michael.riedmann@npagroup.com)

Abstract

AbstractIn 1993 synthetic aperture radar (SAR) interferometry (InSAR) was introduced to the wider remote sensing community with the publication of the interferogram depicting the ground deformation caused by the Landers earthquake. Although the power of interferometry was demonstrated, the conventional technique has not always been applicable in all operational scenarios. Over the last few years, however, a number of technical developments have emerged that provide a higher precision of motion rates, the extraction of specific motion histories, and precise targeting. This paper examines uses of differential SAR interferometry (DifSAR) for monitoring geohazards. Limitations of DifSAR will be discussed: lack of coherence, atmospheric refraction and targeting. It will be shown how some of these limitations can be overcome with persistent scatterer interferometry (PSI), which detects slow ground motion with annual rates of as little as a few millimetres, reconstructing a motion history based on the European Space Agency's SAR image archive. The technique permits the estimation and removal of the atmospheric phase, achieving higher accuracies than DifSAR. PSI relies on the availability of pre-existing ground features that strongly and persistently reflect back the signal from the satellite. However, in highly vegetated regions, PSI may not be applicable because of the lack of natural scatterers. To ensure motion measurement of the ground or structures at targeted locations, the NPA Group is developing InSAR using artificial radar reflectors, such as Corner Reflectors (CRs) or Compact Active Transponders (CATs). Both reflector types are still undergoing validation tests, but results show a high phase stability in both cases.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

Reference18 articles.

1. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation

2. Synthetic aperture radar interferometry

3. Synthetic Aperture Radar Interferometry to Measure Earth’s Surface Topography and Its Deformation

4. Ferretti A. Rocca F. Prati C. (1999) Non-uniform motion monitoring using the permanent scatterers technique. FRINGE ‘99: Second ESA International Workshop on ERS SAR Interferometry, 10–12 November 1999, Liège, 1–6.

5. Mapping small elevation changes over large areas: Differential radar interferometry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3