Affiliation:
1. Gutenbergstraβe 60
14467 Potsdam, Germany
epbank@web.de
2. GeoForschungsZentrum Potsdam
Telegrafenberg, 14473 Potsdam, Germany
3. Göttinger Zentrum Geowissenschaften, Universität
Goldschmidtstraβe 1-3, 37677 Göttingen, Germany
Abstract
AbstractThis chapter documents the fracture process associated with the early cooling stage of felsic magma. Characteristics of pre-exhumation joints include their spatial distribution in granite bodies, their fracture surface morphology, and geological and petrological evidence for the depth of fracture initiation. These characteristics allow inferences about the depth and the time of joint origin in the South Bohemian Pluton. The intrusion levels of currently exposed granites of the pluton were 7.4 km in the northern part and 14.3 km in the southern part.Within the northern Mrákotín Granite (Boršov) early NNE joints propagated while the granite was at a temperature near the solidus, and, in part, magma was still being injected, post-dated by thin granite dykes along NNE joints. Evidence for the pre-exhumation initiation of these joints comes from the geochronological dating of these late-granite dykes (1–2 cm thick) at 324.9 Ma in age, which were creating their own rupture in the rock. The timing of the pluton emplacement at 330–324 Ma and the cooling ages of 328–320 Ma have been given by previous studies. From fluid inclusions within the late-granite dykes that occupy joint surfaces, the trapping depth of the analysed inclusions was calculated to be 7.4 km. Near the solidus H2O separates during the crystallization of anhydrous phases. The associated increasing H2O pressure can initiate the first cracks and can generate a small portion of new granitic melt, which forces the cyclic fracture propagation together with mobile, low-viscosity ‘residual melt’ input into the fracture.The determination of the intrusion level and time at which the dykes began cooling provide evidence for the joint initiation at a depth of 7.4 km, which was connected with the level and process of final emplacement and early cooling of the Mrákotín Granite long before the main exhumation. At the earliest, the erosion of the upper rock pile, 7.4 km in thickness, started significantly after generation of the early joint sets. The NNE-trending joints are persistent in orientation throughout the South Bohemian Pluton, but the joint-surface morphology varies in all subplutons and occupies all sections of the stress intensity v. crack-propagation velocity curve (Wiederhorn-Bahat curve).
Publisher
Geological Society of London
Subject
Geology,Ocean Engineering,Water Science and Technology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献